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Logical Evidence

[Γ] ∀x, p
[Γ, x] p

What about evidence for other connectives?

Statement p Convert  into prefix form;  has no quantifiersp p′ 

Convert  into conjunctive formp′ Statement Qx1, …, Qxn, p′ 

Statement Qx1, …, Qxn, (a1 ∨ a2 ∨ …) ∧ (b1 ∨ …) ∧ …

[Γ] ex ∉ Γ
[Γ] ∃x, p

[Γ] p[x := e]



Axioms
Set of basic facts you use to prove other facts

[Γ] a1, a2, … ⊢ p
Axioms

Axioms can be quantified, with rules:

[Γ] e x ∉ Γ
[Γ] ∀x, a ⊢ p

[Γ] a[x := e] ⊢ p
[Γ] ∃x, a ⊢ p
[Γ, x] a ⊢ p



Domain Facts

x < 0 ∨ x = 0 ∨ 0 < x

x < 0 ∧ x < 0 → x × 0 < x × x

0 < x ∧ 0 < x → x × 0 < x × x

x = 0 ∧ x = x → x × x = 0 × 0

x × x = 0 ∨ 0 < x × x

[a := x, b := 0]

[a := 0, b := x]

[a := x, b := 0]
[c := x, d := 0]

x × 0 = 0

Basic facts imply other facts!

x = x

Abstract block to boolean



Whose Axioms?

Logician questions

Are they correct?

Are they useful?

Axioms come with the theory, not the problem
Responsibility of logic designer, not the prover

What’re the axioms?

Which to use?

Prover questions

No easy answers!



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

First-order Logic Decision Procedures

Boolean 
logic Syntax Proof Theory



First-order Theories
How do we reason about equality?

Equality as substitution

How do we reason about integers?
Many choices of axioms

How do we reason about arrays?
Defining new operations, gluing together theories

Limited complexity in software verification problems



Equality
The true meaning of identity



Equality Axioms
How do you prove two things are equal?

Reflection 
∀x, x = x

Symmetry 
∀x, ∀y, x = y → y = x

Transitivity 
∀x, ∀y, ∀z, (x = y ∧ y = z) → x = z

Plus, domain-specific axioms

Commutativity 
∀x, ∀y, x + y = y + x

Read-over-write 
∀a, ∀i, ∀x, a[i := x][i] = x



Using Equality

x = y
What does equality tell us about  and ?x y

It tells us that  and  have the same valuex y
Which means we can replace  by  in any expressionx y

f(x) = f(y)



Functional Equality

∀x, ∀y, x = y → f(x) = f(y)

Fundamental axiom of equality as substitution

Extends to multi-argument functions and relations

∀x1, ∀y1, …, x1 = y1 ∧ x2 = y2 ∧ … →

∀x, ∀y, x = y → P(x) ↔ P(y)

f(x1, x2, …) = f(y1, y2, …) R(x1, x2, …) ↔ R(y1, y2, …)

Axiom schema, a “menu” for axioms



Construction

Use

Two Types of Axioms

Reflection 
∀x, x = x

Symmetry 
∀x, ∀y, x = y → y = x

Transitivity 
∀x, ∀y, ∀z, (x = y ∧ y = z) → x = z

f(x1, x2, …) = f(y1, y2, …) R(x1, x2, …) ↔ R(y1, y2, …)

Substitution 
∀x1, ∀y1, …, x1 = y1 ∧ x2 = y2 ∧ … →



Example Proof
Symmetry can be proven from substitution

∀x, ∀y, x = y → y = x[ ] ⊢∀x, ∀y, x = y → (x = x ↔ y = x)∀x, x = x ,

 with ∀x, ∀y, x = y → P(x) ↔ P(y) P(z) := z = x with P(z) := z = x



Example Proof
Symmetry can be proven from substitution

[ ] ∀x, ∀y, x = y → y = x⊢∀x, x = x ∀x, ∀y, x = y → (x = x ↔ y = x),

[x, y] x = y → y = x⊢∀x, x = x ∀x, ∀y, x = y → (x = x ↔ y = x),

[x, y] x = y → y = x⊢x = x x = y → (x = x ↔ y = x),
A B → (A ↔ C) B → C∧ →

Proof requires instantiating axioms, quantifiers
Major challenge for automatic proof search



Is it Enough?
Reflexivity + substitution axioms prove any equality fact

However, challenging for computers

Proof uses model theory, mathematical study of proof systems

Need to invent functions and relations for axioms

Non-quantified statements easy to prove (next Tue!)
Quantified statements Non-quantified statements

Impossible O(n log n)



Integers
Three ways to reason about numbers



History
    Induction can prove many         
    arithmetic facts

    We could have some axioms         
    for arithmetic

    I have a full second-order         
    axiom system



History
    Induction can prove many         
    arithmetic facts

    We could have some axioms         
    for arithmetic

    I have a full second-order         
    axiom system

Guys check out my book: 

Arithmetices principia, 
nova methodo exposita 

It has first-order axioms. 
Also I invented some symbols: 

∧ , ∨ , ⊂ , ∈



The Axioms
Axioms for equality (reflexivity, substitution)

Injectivity 
∀x, ∀y, x + 1 = y + 1 → x = y

Discrimination 
∀x, x + 1 ≠ 0

∀x, x + 0 = x

∀x, ∀y, x + (y + 1) = (x + y) + 1

Addition
∀x, x × 0 = 0

∀x, ∀y, x × (y + 1) = (x × y) + x

Multiplication

Definition of the  operation:x + 1

Definition of addition and multiplication:

First:  
assume 

0 ≤ n



The Axioms
Axioms for equality (reflexivity, substitution)

Definition of the  operationx + 1

Definition of addition and multiplication

The axiom of induction:

P(0) ∧ (∀x, P(x) → P(x + 1)) → (∀x, P(x))

First:  
assume 

0 ≤ n



BA

Induction
P(0) ∧ (∀x, P(x) → P(x + 1)) → (∀x, P(x))

Let’s prove ∀n, ∃k, n = 2 × k ∨ n = 2 × k + 1

P(n) := ∃k, n = 2 × k ∨ n = 2 × k + 1

P(0) := ∃k, 0 = 2 × k ∨ 0 = 2 × k + 1 k := 0
0 = 2 × 0 ∨ 0 = 2 × 0 + 1

A

✅



BA

Induction
P(0) ∧ (∀x, P(x) → P(x + 1)) → (∀x, P(x))

Let’s prove ∀n, ∃k, n = 2 × k ∨ n = 2 × k + 1

P(n) := ∃k, n = 2 × k ∨ n = 2 × k + 1

→

∨
∃k′ , n + 1 = 2 × k′ ∨ n + 1 = 2 × k′ + 1

[n, k] ∃k, n = 2 × k ∨ n = 2 × k + 1

∃k, n + 1 = 2 × k ∨ n + 1 = 2 × k + 1

n = 2 × k ∨ n = 2 × k + 1

k := k

k′ := k + 1

B ∀n, P(n)

P(n + 1)

✅



BA

Induction
P(0) ∧ (∀x, P(x) → P(x + 1)) → (∀x, P(x))

Let’s prove ∀n, ∃k, n = 2 × k ∨ n = 2 × k + 1

P(n) := ∃k, n = 2 × k ∨ n = 2 × k + 1

→
n + 1 = 2 × k ∨ n + 1 = 2 × k + 1

∨
n + 1 = 2 × (k′ + 1) ∨ n + 1 = 2 × (k′ + 1) + 1

[n, k] n = 2 × k ∨ n = 2 × k + 1

✅ ✅ ✅

B



Naturals to Integers

∀x, ∃y, ∃z, x < y − z → x × y − z < z

∀x+, ∀x−,

x+ − x−

Can reason about integers in terms of natural numbers
Each integer: difference of a pair of natural numbers

Move negative terms across inequalities
Result: natural number equation with twice the variables



Using the Axioms
The Peano axioms are powerful but complex

Difficult to come up with  values for inductionP

Full power not needed for verification
Number theory, provability, complex identities don’t come up

Quantified statements Non-quantified statements

Impossible Impossible

Find fragments of the axioms that computers can handle



Variant Axioms
Full power not needed for verification

Find fragments of the axioms that computers can handle

No induction Robinson Arithmetic Impossible

No multiplication Presberger Arithmetic O(exp(exp(exp(n))))

No multiplication, quantifiers Linear Integer Arithmetic O(exp(exp(n)))

*

*

* Of variables; multiplication by constants is repeated addition

Weak fragment sufficient for verification of most code
Later in the class: what about code where it's not sufficient?



Course Updates
Assignment 1 Grading



Assignment 1
Assignment 1 grading done

Please review your grade and comments
Let us know if we missed something
10 points given for bonus problem

Assignment 2 posted, due next Thursday
Solve KenKen problems with Z3; compare to MiniSat

Common issues: late submissions, input / output format
Please put your name in file name; it helps grading



Arrays
Combining multiple theories



Theory of Arrays

Sorts 
Int 
Array

Constants 
  : Intn

Functions 
Int : Int 

Int + Int : Int 
Int × Int : Int 
Array[ Int ] : Int 
len(Array) : Int 
Array[ Int := Int ] : Array

−
Relations 
Int = Int 
Int < Int 
Int  Array∈

Array reasoning requires value and index reasoning
Depend on axioms for values and axioms for indices

Arrays have a value for every index



Define one theory in terms of another

Axioms of Arrays
Axioms for equality (reflexivity, substitution)

Axioms for integers (pick your favorite)

Definition of “array set”

Definition of “array contains”

∀a, ∀x, ∀i, ∀j, i = j ∧ j < len(a) → a[i := x][ j] = x

∀a, ∀x, ∀i, ∀j, i ≠ j ∧ j < len(a) → a[i := x][ j] = a[ j]

∀a, ∀i, ∀x, len(a[i := x]) = len(a)

∀a, ∀x, x ∈ a ↔ ∃i, i < len(a) ∧ a[i] = x



Example
Know

Want

∀i, ∀j, left2[i] < right2[ j]

∀i, ∀j, i < j → left2[i] < left2[ j]

∀i, ∀j, i < j → right2[i] < right2[ j]

∀i, ∀j, i < j → (left2 + right2)[i]
< (left2 + right2)[ j]

*

*

*



Defining Append

∀a, ∀b, ∀i, i < len(a) → (a + b)[i] = a[i]

∀a, ∀b, ∀i, ¬(i < len(a)) → (a + b)[i] = b[i − len(a)]

∀a, ∀b, len(a + b) = len(a) + len(b)

Add axioms to define array append

Later, we’ll prove these from an implementation

DEMO



Mixed Theories
First-order logic is common framework for logics

Can freely add sorts, functions, relations, axioms

Convenient to mix + combine theories

Solvers handle first-order core, plug in domain models
Next time: separating a first-order problem into domains



Types of Axioms
Construction + use for relations

Also called “introduction” and “elimination” rules

Definitions for functions and relations
In terms of other, more basic, functions / relations

Induction rules for data structures
Involves injectivity, discrimination, and induction axioms

x = y

x + y

x + 1 ∣ 0



Logic: A Summary
How do we state and prove specifications?



First-order Logic
First-order logic is common framework for logics

p, q := ¬p ∣ p ∨ q ∣ p ∧ q ∣ ∀v, p ∣ ∃v, p

Can add domain-specific constructs
Sorts, constants, functions, and relations define the syntax
Interpretations of each define the meaning
Axioms allow proving first-order statements

Domains can be mixed to solve complex problems



Proofs
Proofs provide compact evidence for a first-order fact

p[ ] ⊢A1, A2, …, An
FactAxioms

Quantifier rules for manipulating facts & axioms

[Γ] A ⊢ ∀x, p
[Γ, x] A ⊢ p

[Γ] A ⊢ ∃x, p
[Γ] A ⊢ p[x := e]

[Γ] ∃x, A ⊢ p
[Γ, x] A ⊢ p

[Γ] ∀x, A ⊢ p
[Γ] A[x := e] ⊢ p

Replace identical expressions with boolean variables



Next Steps
Know how to construct proofs manually

Automated proofs necessary for verification

Choose axioms, remove quantifiers, find resolution proof

Universal solver for first-order logic impossible
Need domain-specific reasoning
Separate problem into individual domains

Combine DPLL with domain-specific solvers



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

First-order Logic Decision Procedures

Boolean 
logic Syntax Proof Theory



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

First-order Logic Decision Procedures

Mixing 
Theories Equality Integers Arrays



To do: 
Course feedback 
Read Chapter 3 
Assignment 2

Nelson-Oppen
Next class:



First-order Theories
How do we reason about equality?

Equality as substitution

How do we reason about integers?
Many choices of axioms

How do we reason about arrays?
Defining new operations, gluing together theories

Limited complexity in software verification problems



Separation

Two domains

Two solvers



Arrangements

Interface 
Between 
Domains



Backtracking

DPLL(T)



To do: 
Course feedback 
Read Chapter 3 
Assignment 2

Nelson-Oppen
Next class:



Z3 code for demo
;;;; Axioms and definitions 

(declare-fun len ((Array Int Int)) Int) 

(define-fun index ((a (Array Int Int)) (i Int)) Bool 
  (and (<= 0 i) (< i (len a)))) 

;; Declare the existence of the "append" function 
(declare-fun append ((Array Int Int) (Array Int Int)) (Array Int Int)) 

;; Axiom 1: select from the left half of an appended array 
(assert (forall ((a (Array Int Int)) (b (Array Int Int)) (i Int)) 
                (=> (index (append a b) i) 
                    (< i (len a)) 
                    (= (select (append a b) i) (select a i))))) 

;; Axiom 2: select from the right half of an appended array 
(assert (forall ((a (Array Int Int)) (b (Array Int Int)) (i Int)) 
                (=> (index (append a b) i) 
                    (>= i (len a)) 
                    (= (select (append a b) i) (select b (- i (len a))))))) 

;; Axioms 3: length of an appended array 
(assert (forall ((a (Array Int Int)) (b (Array Int Int))) 
                (= (len (append a b)) (+ (len a) (len b)))))

;; Definition of an array being sorted 
(define-fun sorted ((a (Array Int Int))) Bool 
  (forall ((i Int) (j Int)) 
          (=> (index a i) (index a j) 
              (< i j) 
              (< (select a i) (select a j))))) 

;; Definition of two arrays being partitioned 
(define-fun partitioned ((a (Array Int Int)) (b (Array Int Int))) Bool 
  (forall ((i Int) (j Int)) 
    (=> (index a i) (index b j) (< (select a i) (select b j))))) 

;;;; Actual problem 

;; "left2" and "right2" are sorted arrays 
(declare-const left2 (Array Int Int)) 
(declare-const right2 (Array Int Int)) 
(assert (sorted left2)) 
(assert (sorted right2)) 

;; "left2" is less than "right2" 
(assert (partitioned left2 right2)) 

(assert (not (sorted (append left2 right2)))) 

(check-sat)

Run with: z3 -smt2 file


