First-order Logic

Specifications section, Logic topic, Lecture 3

Pavel Panchekha

CS 6110, U of Utah 14 January 2020

Facts about Booleans

$$x, y := v \mid \neg x \mid x \wedge y \mid x \vee y$$

Variable

Syntax

That's what you can say; what does it mean?

Depends on the values of the variables

$$[v] = v$$
 is True $[x \land y] = both [x]$ and $[y]$
 $[\neg x] = not [x]$ $[x \lor y] = either [x]$ or $[y]$ or both

Semantics

What use is a Spec?

That's what you can say; what does it mean?

Depends on the values of the variables

We want to use the spec **before** running a program Variables **don't have values** yet!

"Could it be true?" "Must it be true?" "If this, then that?"

Satisfiability

Validity

Implication

Evidence

"Must $(x \lor y) \land (\neg x \lor z) \land (\neg y \lor z) \land \neg z$ be false?" Yes.

If
$$(x \lor y)$$
 and $(\neg x \lor z)$ then $(y \lor z)$

$$\frac{x \lor y}{y \lor z}$$

Logical Resolution

DPLL algorithm

Proof by resolution, presented as a program

- 1. Put into conjunctive form
- 2. Check for variables all alone
- 3. Check for variables with one polarity
- 4. Pick a variable and try setting to True
- 5. If it doesn't work, it **must be** False

Class Progress

Logical reasoning

Program logics

Static analysis

First-order Logic

Decision Procedures

Boolean logic

Syntax

Proof

Theory

First-order Logic

From booleans to integers

Addition/multiplication, new kinds of questions

Semantics of quantifiers

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic

Integer Specifications

A language for arithmetic facts

Specifications

Generally describe facts about program values

Today, we go from boolean to integer values

Like before, we'll discuss syntax, then semantics

Boolean Logic Syntax

$$p,q:=v \mid \neg p \mid p \land q \mid p \lor q$$

Addition, multiplication?

$$x, y := v \mid n \mid -x \mid x + y \mid x \times y$$

$$\text{Var} \quad \text{Constants}$$

Integer Logic Syntax

$$p, q := \neg p \mid p \land q \mid p \lor q$$
$$\mid x = y \mid x < y$$

Boolean Expressions

$$x, y := v \mid n \mid -x \mid x + y \mid x \times y$$

Integer Expressions

Equality, comparison?

Examples

Addition is **commutative** (order-independent)

$$x + y = y + x$$

Adding to a comparison on both sides is valid

$$x < y \longleftrightarrow x + z < y + z$$

$$p \leftrightarrow q = (p \land q) \lor (\neg p \land \neg q)$$

Examples

Multiplying a comparison by a positive number is valid

$$0 < z \to (x < y \leftrightarrow x \times z < y \times z)$$

Condition on the equivalence

Integers are either even or odd

$$(n = 2 \times k) \vee (n = 2 \times k + 1)$$

Integer Semantics

In integer logic, what does a statement mean?

```
[p] \in \{ \text{True}, \text{False} \}
                                      \llbracket p \land q \rrbracket = \mathbf{both} \llbracket p \rrbracket \text{ and } \llbracket q \rrbracket
\llbracket \neg p \rrbracket = \mathsf{not} \llbracket p \rrbracket
                                      [[p \lor q]] = either [[p]] or [[q]] or both
[[x = y]] = [[x]] equals [[y]] [[x < y]] = [[x]] is less than [[y]]
[\![x]\!] \in \{..., -1, 0, 1, ...\}
                                            [-x] = negative [x]
                                         [[x \times y]] = product of [[x]] and [[y]]
||v|| = value of v
[n] = the integer n
                                         [x + y] = \text{sum of } [x] \text{ and } [y]
```

Using a Specification

"Could it be true?" "Must it be true?" "If this, then that?"

Satisfiability

Validity

Implication

Next time: what evidence can we provide of these?

$$(n = 2 \times k) \vee (n = 2 \times k + 1)$$

Satisfiable?

Valid?

Something else?

Quantifiers

New questions, internalization, and models

Using a Specification

$$(n = 2 \times k) \vee (n = 2 \times k + 1)$$

Satisfiable?

Valid?

Something else?

None of the above. Validity on n, satisfiability for k

Must it be the case, for all n

That it **could** be the case, for some k

$$(n = 2 \times k) \vee (n = 2 \times k + 1)$$

Complex Questions

Perfect squares are **zero or one** modulo 4

For all n

$$n = k \times k \implies (n = 4 \times m + 1) \vee (n = 4 \times m)$$

For some k For some m

Solution: include all/some in the specification itself

$$p,q:=\dots \mid \forall v,p \mid \exists v,p$$

For all integers v, p is true

For some integer v, p is true

Complex Questions

Perfect squares are zero or one modulo 4

For all *n*

$$\forall n, (\exists k, n = k \times k) \implies \exists m, (n = 4 \times m + 1) \lor (n = 4 \times m)$$
For some k
For some m

Solution: include all/some in the specification itself

$$p,q:=\dots \mid \forall v,p \mid \exists v,p$$

For all integers v, p is true

For some integer v, p is true

Quantifier Semantics

$$p,q:=\dots \mid \forall v,p \mid \exists v,p$$

For all integers v, p is true

For some integer v, p is true

$$\forall x, \exists y, x < y$$

For some integer y, x < y is true | What is χ ?

$$\Gamma = \{x: 3, y: 5, ...\}$$

$$[v]_{\Gamma}$$
 = value of v in Γ $[x+y]_{\Gamma}$ = sum of $[x]_{\Gamma}$ and $[y]_{\Gamma}$

Quantifier Semantics

$$p,q:=\dots \mid \forall v,p \mid \exists v,p$$

For all integers v, p is true

For some integer v, p is true

$$\llbracket v \rrbracket_{\Gamma} = \text{value of } v \text{ in } \Gamma \qquad \llbracket x \rrbracket_{\Gamma}$$

$$\llbracket v \rrbracket_{\Gamma} = \text{value of } v \text{ in } \Gamma \qquad \llbracket x + y \rrbracket_{\Gamma} = \text{sum of } \llbracket x \rrbracket_{\Gamma} \text{ and } \llbracket y \rrbracket_{\Gamma}$$

$$[\![\forall v, p]\!]_{\Gamma} = [\![p]\!]_{\Gamma'}$$
 for all Γ' , where $\Gamma'[x] = \Gamma[x]$ for all x except y

Semantics of ∀

Internalization

 $\forall x, p \rightarrow$ "For all x, p is true" \rightarrow "p must be true"

Quantifiers internalize the notion of validity / satisfiability

"p is satisfiable" "p is valid"
$$\exists x, \exists y, ..., \exists z, p$$
 $\forall x, \forall y, ..., \forall z, p$

Closed terms (all variables quantified) sufficient Only one question to ask: is p true?

Examples

$$\forall x, \exists y, x < y$$

$$\exists x, \forall y, x < y$$

$$\exists x, \exists y, x < y$$

$$\forall x, \forall y, x < y$$

$$\forall x, \exists y, x + y = y$$

$$\exists x, \forall y, x + y = y$$

$$\forall y, \exists x, x + y = y$$

$$\exists y, \forall x, x + y = y$$

$$\exists x, \exists y, x + y = y$$

$$\forall x, \forall y, x + y = y$$

$$\forall x, \exists y, x = y \times y$$

$$\exists x, \forall y, x = y \times y$$

$$\forall y, \exists x, x = y \times y$$

$$\exists y, \forall x, x = y \times y$$

$$\exists x, \exists y, x = y \times y$$

$$\forall x, \forall y, x = y \times y$$

Equivalences

$$\neg \forall x, p \leftrightarrow \exists x, \neg p$$
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

Prefix form: all quantifiers at the beginning

$$(\forall x, p) \lor q \rightarrow \forall x, p \lor q \qquad (\forall x, p) \land q \rightarrow \forall x, p \land q$$

Quantifier alternations are what matter

$$\forall x, \forall y, p \leftrightarrow \forall y, \forall x, p \qquad \forall x, \exists y, p \nleftrightarrow \exists y, \forall x, p$$

Course Updates

More about the class project

Sample Projects

Class project in **groups of two**. (Result of survey!)

- Symbolic execution for LLVM IR
- Fuzzing existing SMT solvers
- Building a parallel SAT/SMT solver
- Modeling distributed systems in TLA+

Alternative Assignment

Solo alternative to project. Released soon.

- 1. Implement a simple programming language
- 2. Implement weakest precondition generation
- 3. Implement static analysis for array bounds
- 4. Verify a quicksort implementation

Beyond Arithmetic

Domains, relations, and theories

Theory of Arrays

How would we write statements about arrays?

$$p, q = ... \mid x \in a$$

 $x, y = ... \mid a[x] \mid len(a)$
 $a = v \mid a[x := y]$

New logic for every data type? **No!**

Syntax

Equivalences

Semantics

Normal forms

Theory of Arrays

First-order Logic

$$p, q := \neg p \mid p \lor q \mid p \land q \mid \forall v, p \mid \exists v, p$$

$$\mid x = y \mid x < y \mid x \in a \text{ Relations}$$

Constants

$$x, y := u \mid n \mid -x \mid x + y \mid x \times y \mid a[x] \mid len(a)$$

Functions
$$a := v \mid a[x := y]$$

Sorts

Theory of Arrays

Theory: a set of *sorts*, *constants*, *functions*, and *relations*Theories are **like programs**, the logic **like an OS**

	•	,	O

Sorts

Int

Array

Constants

n:Int

Functions

−Int : *Int*

Int + Int : Int

Int × Int : Int

Array[Int] : Int

len(*Array*) : *Int*

Array[Int := Int] : Int

Relations

Int = Int

Int < Int

Int \in Array

Separate the logic from the data and operations

Syntax

$$p,q := \neg p \mid p \lor q \mid p \land q \mid \forall v,p \mid \exists v,p$$

For each sort T

$$e_T := v_T$$

For each constant

$$e_T := c$$

c:T

For each function

$$f(T_1, T_2, \ldots) : T$$

$$e_T := f(e_{T_1}, e_{T_1}, \dots)$$

For each relation

$$R(T_1, T_2, ...)$$

$$p := R(e_{T_1}, e_{T_1}, \dots)$$

Semantics

For each sort T

A value set **T** (or "Domain")

$$\llbracket e_T \rrbracket \in \mathbf{T}$$

For each constant

c:T

A value $c \in T$

$$[\![c]\!] = \mathbf{c}$$

For each function

$$f(T_1, T_2, ...) : T$$

A function $f: T_1, T_2, ... \rightarrow T$

$$[[f(a,b,...)]] = f([[a]], [[b]],...)$$

For each relation

$$R(T_1, T_2, ...)$$

A relation $R: T_1, T_2, ... \rightarrow Bool$

$$[[R(a,b,...)]] = R([[a]], [[b]],...)$$

The Recipe

First-order logic

Sorts, constants, functions, relations

+ Semantics

Theory

Examples

Graphs

Binary search trees

Sorts Node, Edge

Tree, Value

Constants None

Empty: Tree

Functions *Edge*.from : *Node*

Node(Value, Tree, Tree): Tree

Edge.to: Node

Tree.left: Tree

Tree.right: Tree

Relations Node = Node

Value < Value

Edge = Edge

Value ∈ Tree

Next class: First-order Proofs

To do:

- ☐ Course feedback
- □ Reading in textbook
- □ Assignment 1

First-order Logic

From booleans to integers

Addition/multiplication, new kinds of questions

Semantics of quantifiers

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic

EVIDENCE

no Talles

FINITE PROOFS

MATH AS GAME

PROOF RULES

COMPLETENESS

THE MAP

VS

THE TERRITORY

Next class: First-order Proofs

To do:

- ☐ Course feedback
- □ Reading in textbook
- □ Assignment 1