First-order Logic

Specifications section, Logic topic, Lecture 3

Pavel Panchekha
CS 6110, U of Utah
14 January 2020
Facts about Booleans

That's what you can say; what does it mean?

Depends on the values of the variables

\[
\begin{align*}
\llbracket v \rrbracket &= \text{"v is True"} \\
\llbracket \neg x \rrbracket &= \text{not } \llbracket x \rrbracket \\
\llbracket x \land y \rrbracket &= \text{both } \llbracket x \rrbracket \text{ and } \llbracket y \rrbracket \\
\llbracket x \lor y \rrbracket &= \text{either } \llbracket x \rrbracket \text{ or } \llbracket y \rrbracket \text{ or both}
\end{align*}
\]
What use is a Spec?

That’s what you can say; what does it mean?

Depends on the values of the variables 😞

We want to use the spec before running a program

Variables don’t have values yet!

“Could it be true?” “Must it be true?” “If this, then that?”

Satisfiability Validity Implication
“Must \((x \lor y) \land (\neg x \lor z) \land (\neg y \lor z) \land \neg z\) be false?” Yes.

If \((x \lor y)\) and \((\neg x \lor z)\) then \((y \lor z)\)

\[
\begin{array}{c}
x \lor y \\
\uparrow & \\
\neg x \lor z \\
\downarrow & \\
y \lor z
\end{array}
\]

Logical Resolution
DPLL algorithm

Proof by resolution, presented as a program

1. Put into conjunctive form
2. Check for variables all alone
3. Check for variables with one polarity
4. Pick a variable and try setting to True
5. If it doesn’t work, it must be False
First-order Logic

From booleans to **integers**

Addition/multiplication, new kinds of questions

Semantics of **quantifiers**

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic
Integer Specifications

A language for arithmetic facts
Specifications

Generally describe **facts about program values**

Today, we go **from boolean to integer values**

Like before, we’ll discuss **syntax**, then **semantics**
Boolean Logic Syntax

\[
p, q := \textcolor{red}{v} \mid \neg p \mid p \land q \mid p \lor q\]

 Addition, multiplication?

\[
x, y := \textcolor{blue}{v} \mid \textcolor{blue}{n} \mid -x \mid x + y \mid x \times y\]

\text{Var, Constants}
Integer Logic Syntax

Boolean Expressions

\[p, q := \neg p \mid p \land q \mid p \lor q \mid x = y \mid x < y \]

Integer Expressions

\[x, y := v \mid n \mid -x \mid x + y \mid x \times y \]

Equality, comparison?
Examples

Addition is **commutative** (order-independent)

\[x + y = y + x \]

Adding to a **comparison** on both sides is valid

\[x < y \iff x + z < y + z \]

\[p \iff q = (p \land q) \lor (\neg p \land \neg q) \]
Examples

Multiplying a comparison by a positive number is valid

\[0 < z \rightarrow (x < y \leftrightarrow x \times z < y \times z) \]

Condition on the equivalence

Integers are **either even or odd**

\[(n = 2 \times k) \vee (n = 2 \times k + 1) \]
Integer Semantics

In integer logic, what does a statement mean?

- $\llbracket p \rrbracket \in \{ \text{True}, \text{False} \}$
- $\llbracket v \rrbracket = \text{value of } v$
- $\llbracket n \rrbracket = \text{the integer } n$

- $\llbracket \neg p \rrbracket = \text{not } \llbracket p \rrbracket$
- $\llbracket x = y \rrbracket = \llbracket x \rrbracket \text{ equals } \llbracket y \rrbracket$
- $\llbracket x < y \rrbracket = \llbracket x \rrbracket \text{ is less than } \llbracket y \rrbracket$

- $\llbracket [x] \rrbracket \in \{ \ldots, -1, 0, 1, \ldots \}$
- $\llbracket -x \rrbracket = \text{negative } \llbracket x \rrbracket$
- $\llbracket x \times y \rrbracket = \text{product of } \llbracket x \rrbracket \text{ and } \llbracket y \rrbracket$
- $\llbracket x + y \rrbracket = \text{sum of } \llbracket x \rrbracket \text{ and } \llbracket y \rrbracket$

- $\llbracket p \wedge q \rrbracket = \text{both } \llbracket p \rrbracket \text{ and } \llbracket q \rrbracket$
- $\llbracket p \lor q \rrbracket = \text{either } \llbracket p \rrbracket \text{ or } \llbracket q \rrbracket \text{ or both}$
Using a Specification

“Could it be true?” “Must it be true?” “If this, then that?”

Satisfiability Validity Implication

Next time: what evidence can we provide of these?

\[(n = 2 \times k) \lor (n = 2 \times k + 1)\]

Satisfiable? Valid? Something else?
Quantifiers

New questions, internalization, and models
Using a Specification

\[(n = 2 \times k) \lor (n = 2 \times k + 1)\]

Satisfiable?
Valid?
Something else?

None of the above. Validity on \(n \), satisfiability for \(k \)

Must it be the case, for all \(n \)

That it could be the case, for some \(k \)

\[(n = 2 \times k) \lor (n = 2 \times k + 1)\]
Complex Questions

Perfect squares are zero or one modulo 4

For all n

$n = k \times k \iff (n = 4 \times m + 1) \lor (n = 4 \times m)$

For some k For some m

Solution: include all/some in the specification itself

$p, q := \ldots \mid \forall v, p \mid \exists v, p$

For all integers v, p is true For some integer v, p is true
Complex Questions

Perfect squares are zero or one modulo 4

For all n

$$\forall n, \left(\exists k, n = k \times k \right) \implies \exists m, \left(n = 4 \times m + 1 \right) \lor \left(n = 4 \times m \right)$$

For some k \hspace{2cm} For some m

Solution: include all/some in the specification itself

$$p, q := \ldots \mid \forall v, p \mid \exists v, p$$

For all integers v, p is true \hspace{1cm} For some integer v, p is true
Quantifier Semantics

\[p, q \ := \ldots \mid \forall v, p \mid \exists v, p \]

For all integers \(v \), \(p \) is true

For some integer \(v \), \(p \) is true

\[\forall x, \exists y, x < y \]

For some integer \(y \), \(x < y \) is true

What is \(x \)?

\[\Gamma = \{ x : 3, y : 5, \ldots \} \]

\[[v]_\Gamma = \text{value of } v \text{ in } \Gamma \]

\[[x+y]_\Gamma = \text{sum of } [x]_\Gamma \text{ and } [y]_\Gamma \]
Quantifier Semantics

\[p, q ::= \ldots \mid \forall v, p \mid \exists v, p \]

For all integers \(v \), \(p \) is true

\[[v]_\Gamma = \text{value of } v \text{ in } \Gamma \]

For some integer \(v \), \(p \) is true

\[[x + y]_\Gamma = \text{sum of } [x]_\Gamma \text{ and } [y]_\Gamma \]

\[[\forall v, p]_\Gamma = [p]_{\Gamma'} \text{ for all } \Gamma', \text{ where } \Gamma'[x] = \Gamma[x] \text{ for all } x \text{ except } v \]

Semantics of \(\forall \)
Internalization

∀x, p → “For all x, p is true” → “p must be true”

Quantifiers internalize the notion of validity / satisfiability

“p is satisfiable”

∃x, ∃y, ..., ∃z, p

“p is valid”

∀x, ∀y, ..., ∀z, p

Closed terms (all variables quantified) sufficient

Only one question to ask: is \(p \) true?
<table>
<thead>
<tr>
<th>∀x, ∃y, x < y</th>
<th>∀x, ∃y, x + y = y</th>
<th>∀x, ∃y, x = y × y</th>
</tr>
</thead>
<tbody>
<tr>
<td>∃x, ∀y, x < y</td>
<td>∃x, ∀y, x + y = y</td>
<td>∃x, ∀y, x = y × y</td>
</tr>
<tr>
<td>∃x, ∃y, x < y</td>
<td>∀y, ∃x, x + y = y</td>
<td>∀y, ∃x, x = y × y</td>
</tr>
<tr>
<td>∀x, ∀y, x < y</td>
<td>∀y, ∀x, x + y = y</td>
<td>∀y, ∀x, x = y × y</td>
</tr>
<tr>
<td></td>
<td>∃x, ∃y, x + y = y</td>
<td>∃x, ∃y, x = y × y</td>
</tr>
<tr>
<td></td>
<td>∀x, ∀y, x + y = y</td>
<td>∀x, ∀y, x = y × y</td>
</tr>
</tbody>
</table>
Equivalences

\(-\forall x, p \leftrightarrow \exists x, \neg p\)
\(- (p \land q) \leftrightarrow \neg p \lor \neg q\)

Prefix form: all quantifiers at the beginning

\((\forall x, p) \lor q \rightarrow \forall x, p \lor q\)
\((\forall x, p) \land q \rightarrow \forall x, p \land q\)

Quantifier alternations are what matter

\(\forall x, \forall y, p \leftrightarrow \forall y, \forall x, p\)
\(\forall x, \exists y, p \leftrightarrow \exists y, \forall x, p\)
Course Updates

More about the class project
Sample Projects

Class project in **groups of two**. (Result of survey!)

- Symbolic execution for LLVM IR
- Fuzzing existing SMT solvers
- Building a parallel SAT/SMT solver
- Modeling distributed systems in TLA+
Alternative Assignment

Solo alternative to project. Released soon.

1. Implement a simple programming language
2. Implement weakest precondition generation
3. Implement static analysis for array bounds
4. Verify a quicksort implementation
Beyond Arithmetic
Domains, relations, and theories
Theory of Arrays

How would we write statements about arrays?

\[p, q = \ldots | x \in a \]
\[x, y = \ldots | a[x] | \text{len}(a) \]
\[a = v | a[x := y] \]

New logic for every data type? **No!**

- Syntax
- Semantics
- Equivalences
- Normal forms
Theory of Arrays

First-order Logic

\[p, q := \neg p \mid p \lor q \mid p \land q \mid \forall v, p \mid \exists v, p \]

\[\mid x = y \mid x < y \mid x \in a \quad \text{Relations} \]

Constants

\[x, y := u \mid n \mid -x \mid x + y \mid x \times y \mid a[x] \mid \text{len}(a) \]

Functions

\[a := v \mid a[x := y] \]

Sorts
Theory of Arrays

Theory: a set of sorts, constants, functions, and relations

Theories are like programs, the logic like an OS

Sorts
- Int
- Array

Constants
- $n : \text{Int}$

Functions
- $\neg \text{Int} : \text{Int}$
- $\text{Int} + \text{Int} : \text{Int}$
- $\text{Int} \times \text{Int} : \text{Int}$
- $\text{Array}[\text{Int}] : \text{Int}$
- $\text{len}(\text{Array}) : \text{Int}$
- $\text{Array}[\text{Int} := \text{Int}] : \text{Int}$

Relations
- $\text{Int} = \text{Int}$
- $\text{Int} < \text{Int}$
- $\text{Int} \in \text{Array}$

Separate the logic from the data and operations
Syntax

\[p, q ::= \neg p \mid p \lor q \mid p \land q \mid \forall v, p \mid \exists v, p \]

For each **sort** \(T \)
\[e_T ::= v_T \]

For each **constant** \(c : T \)
\[e_T ::= c \]

For each **function** \(f(T_1, T_2, \ldots) : T \)
\[e_T ::= f(e_{T_1}, e_{T_1}, \ldots) \]

For each **relation** \(R(T_1, T_2, \ldots) \)
\[p ::= R(e_{T_1}, e_{T_1}, \ldots) \]
Semantics

For each sort T

A value set T (or “Domain”)
$$[[e_T]] \in T$$

For each constant $c : T$

A value $c \in T$
$$[[c]] = c$$

For each function $f(T_1, T_2, \ldots) : T$

A function $f : T_1, T_2, \ldots \rightarrow T$
$$[[f(a, b, \ldots)]] = f([[a]], [[b]], \ldots)$$

For each relation $R(T_1, T_2, \ldots)$

A relation $R : T_1, T_2, \ldots \rightarrow \text{Bool}$
$$[[R(a, b, \ldots)]] = R([[a]], [[b]], \ldots)$$
The Recipe

First-order logic

Sorts, constants, functions, relations

+ Semantics

Theory
Examples

<table>
<thead>
<tr>
<th></th>
<th>Graphs</th>
<th>Binary search trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sorts</td>
<td>Node, Edge</td>
<td>Tree, Value</td>
</tr>
<tr>
<td>Constants</td>
<td>None</td>
<td>Empty : Tree</td>
</tr>
<tr>
<td>Functions</td>
<td>Edge.from : Node</td>
<td>Node(Value, Tree, Tree) : Tree</td>
</tr>
<tr>
<td></td>
<td>Edge.to : Node</td>
<td>Tree.left : Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tree.right : Tree</td>
</tr>
<tr>
<td>Relations</td>
<td>Node = Node</td>
<td>Value < Value</td>
</tr>
<tr>
<td></td>
<td>Edge = Edge</td>
<td>Value ∈ Tree</td>
</tr>
</tbody>
</table>
Next class: First-order Proofs

To do:
☐ Course feedback
☐ Reading in textbook
☐ Assignment 1
First-order Logic

From booleans to **integers**

Addition/multiplication, new kinds of questions

Semantics of **quantifiers**

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic
EVIDENCE

NO TABLES

FINITE PROOFS
MATH AS GAME

PROOF RULES
Completeness

The Map

Vs

The Territory
Next class:

First-order Proofs

To do:

☐ Course feedback
☐ Reading in textbook
☐ Assignment 1