First-order Logic

Specifications section, Logic topic, Lecture 3

Pavel Panchekha

CS 6110, U of Utah
14 January 2020

Facts about Booleans

Lyi= o1 x 1l XKV] GV

That’s what you can say; what does it mean?

Syntax

Depends on the values of the variables

[v]] = "vis True"
[~x]| = not [[x]|

[xVyl

[x A y]] = both [[x]] and

[y]

or both

= either [x] or [y]

Semantics

What use is a Spec?

That’s what you can say; what does it mean?

Depends on the values of the variables .

We want to use the spec before running a program

Variables don’t have values yet!

“Could it be true?” “Must it be true?” “If this, then that?”

Evidence

“Must (xV y) A (—Ix V2 A(yYyV 2 Az befalse?” Yes.

. /

If xvy) and (-xVz) then (yV z2)

XVYy T J2 AR
VNGZ

Logical Resolution

DPLL algorithm

Proof by resolution, presented as a program

e Put into conjunctive form
Check for variables all alone
Check for variables with one polarity

Pick a variable and try setting to True

e e

If it doesn’t work, it must be False

Class Progress
Logical Program Static
reasoning logics analysis
Soolean Syntax Proof Theo
logic y "y

First-order Logic

From booleans to integers

Addition/multiplication, new kinds of questions

Semantics of quantifiers

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic

Integer Specifications

A language for arithmetic facts

Specifications

Generally describe facts about program values

Today, we go from boolean to integer values

Booleans, Integers, Functions,

Enums Arrays, Trees Specifications
Boolean First-order Higher-order
Logic Logic Logic

Like before, we'll discuss syntax, then semantics

Boolean Logic Syntax

p.gq:=v | p|PAg| pVg

Addition, multiplication?

x,y:=wl|n|—-x|x+y|xXy

Var

i Constants

Integer Logic Syntax

Boolean Expressions

Integer Expressions

Equality, comparison?

Examples

Addition is commutative (order-independent)
XT+Ty=y+Xx
Adding to a comparison on both sides is valid

X<y X+I<y—+Z

peoqgq=(@PAQV(TpA-g)

Examples

Multiplying a comparison by a positive number is valid

O<z—>(x<y<—>x><z<y><z)

Condition on the equivalence

Integers are either even or odd

(n=2><k)\/(n=2><k+1)

Integer Semantics

In integer logic, what does a statement mean”

[p]l € {True, False}

>

[—pll = not

[x =yl = llx]

[Pl

equals |

x]€{....—1.0,1,...}

[v]] = value of v

[n]] = the Integer n

Vi

[p A gll = both [p] and [[¢

IpVql

= elther

[x <yl =1

I

[pll or llq]

x]] is less

[—x]] = negative [x]

[x X y]

[x + y]

or both
than [[y]

= product of [[x]] and [y]]
= sum of [[x]] and [[y]]

Using a Specification

“Could it be true”?” “Must it be true”?” “If this, then that”?”

Next time: what evidence can we provide of these”

(n=2><k)v(n=2><k+1)

Satisfiable? Valid? Something else?

Using a Specification

(n=2><k)v(n=2><k+1)

Satisfiable? Valid? Something else?
None of the above. Validity on n, satisfiability for k

Must It be the case, for all n

That it could be the case, for some k

(n=2><k)v(n=2><k+1)

Complex Questions

Perfect squares are zero or one modulo 4

For all n
n=kXk = (m=4xXm+1)vin=4xm)

For some k For some m

Solution: include all/some in the specification itself

p,qg:=... | Nv,p | 3dv,p

For all integers v, p is true For some integer v, p is true

Complex Questions

Perfect squares are zero or one modulo 4

For all n
‘v’n,(EIk,n=k><k) —> dm,n=4Xm+1)v(in=4XxXm)

For some k For some m

Solution: include all/some in the specification itself

p,qg:=... | Nv,p | 3dv,p

For all integers v, p is true For some integer v, p is true

Quantifier Semantics

p,qg:=...|Nv,p | 3dv,p

For all integers v, p is true For some integer v, p is true

Vx,dy,x <y

For some integer y, X < yis true. What is x?

I'={x:3,y:5, ...}

[vilp=valueof vinI" [x+ y]ly = sum of [[x]lr and [yl

Quantifier Semantics

p.q:=. | \p| 3P

For all integers v, p is true For some integer v, p is true

[vilp=valueof vinI" [x+ y]ly = sum of [[x]l; and [yl

Semantics of V

Internalization

1]

Vx,p — “Forall x, pistrue” = “p must be true”

Quantifiers internalize the notion of validity / satisfiability

“p Is satisfiable” “p is valid”
v v
dx,dy, ..., dz,p Vx,Vy,...,Vz,p

Closed terms (all variables quantified) sufficient
Only one question to ask: is p true”

Examples

WESEEY| vednady=y Vednrs=yx)
Sxvyr<y EEGEEREN 3xVhr=yxo

Vx,Vy,x <y dy,Vx,x+y=y dy,Vx,x =y Xy

Vx,Vy,x+y=y Vx,Vy,x =y XYy

Equivalences

—Vx,p < dx,p
(pAg) < pV g

Prefix form: all quantifiers at the beginning

(Vx,p)Vg—>Vx,pVgqg (Vx,p)Ag = Vx,pAg

Quantifier alternations are what matter

Vx,Vy,p < Vy,Vx,p Vx,dy,p «» dy,Vx,p

Sample Projects

Class project in groups of two. (Result of survey!)

— Symbolic execution for LLVM IR
— Fuzzing existing SMT solvers

— Building a parallel SAT/SMT solver

— Modeling distributed systems in TLA+

Alternative Assignment

Solo alternative to project. Released soon.

1. Implement a simple programming language
2 Implement weakest precondition generation
3. Implement static analysis for array bounds
4. \Verify a quicksort implementation

Beyond Arithmetic

Domains, relations, and theories

Theory of Arrays

How would we write statements about arrays?

pP,.g=...|x€a
x,y=...|alx]| len(a)

a=v|alx:=y]
New logic for every data type”? Nol!

® Syntax ® Equivalences

® Semantics ® Normal forms

Theory of Arrays

First-order Logic

Constants

=uln|=x]x+ylxxy|alx]len()

Functions

Theory of Arrays

Theory: a set of sorts, constants, functions, and relations
Theories are like programs, the logic like an OS

Sorts Functions Relations
INt —Int : Int Int = Int
Array Int + Int : Int Int < Int
Int x Int : Int Int € Array
Array| Int] : Int
n . Int len(Array) : Int

Array| Int == Int | : Int

Separate the logic from the data and operations

Syntax

p.q:="p|lpVvg|lpAg|Vv,p|dv,p

For each sort T €r .= Vr

For each er . =0C

c:. T

For each function e 1= f(eTl, er s L)
AT, T,,..): T

For each relation p = R(ep,er,...)

R(Tla T29 X)

Semantics

For each sort T Avalue set T (or “Domain’)
le;l €T

For each AvalueceT

c: T lc]] =c

For each function A functionf:Tq, T2, .. = T

AT, Ty..):T [fa,b,.)] =[al.[b]....)

For each relation A relation R: T4, T2, ... & Bool

R(T,, T, ...) [R(a,b,..)] = R([al, [A], ...)

The Recipe

First-order logic

Sorts, constants, functions, relations

4+ Semantics

Theory

Examples

Graphs
Sorts Node, Edge

None

Functions Edge.from : Node
Edge.to : Node

Relations Node = Node
Edge = Edge

Binary search trees
Tree, Value

Empty : Tree

Node(Value, Tree, Tree) : Tree
Tree.left : Tree
Tree.right : Tree

Value < Value

Value € Iree

Next class:

First-order Proofs

To do:

Course feedback
Reading in textbook
Assignment 1

First-order Logic

From booleans to integers

Addition/multiplication, new kinds of questions

Semantics of quantifiers

Alternation, closed terms, and internalization

Generalizing integers to arbitrary data types

The recipe for an arbitrary logic

EVie=INC =

I T N\SL.e=5S

= IN Fram i R QO QOO 5

MATEH NS G/\NM=

RO RUIL_ =

CLOMAL S NeENhNae S s

T He= MANA/~

I

P o [—— T B S 4 R IR S T By

Next class:

First-order Proofs

To do:

Course feedback
Reading in textbook
Assignment 1

