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Final Presentation
Final project presentations due tonight

Record and upload the presentations

All class presentations posted tomorrow
Watch all other presentations

Write one question for each other presentation

Answer all questions for your presentation



Final Project
Submit code by Tuesday (deadline changed)

We’ll run quicksort on test cases

We’ll verify programs, and try to verify false things

Include a README locating each project component

For group projects, upload whatever is relevant
Diffs, evaluation scripts, evaluation data

Group projects will be graded by reading code



Internet Cryptography
Why it must be fast and also secure



Encrypted Connections

GET /account HTTP/1.0 
Cookie: token=A0F283B9

POST /transfer HTTP/1.0 
Cookie: token=A0F283B9 

to=hacker&amt=100000.00

Ah, token is 
A0F283B9

Ok, initiate transfer



TLS and HTTPS
Idea: encrypt network traffic, no eavesdropping

GET /account HTTP/1.0 
Cookie: token=A0F283B9

Encryption Key Known

+2Q8O1GeTw/vdK7y2pu/aeBe/
3wcsEqr1OAU22RfZgNHRyDDoBEm
wEnXYLl4QlKU

Encryption Key Unknown

Transport Layer Security: encrypted sockets
HTTPS: HTTP over TLS (over TCP over IP)

Later versions more modular, more secure, more ciphers



How Encryption Works

Message

Secret Key

Encrypted
Cipher

Encrypt and decrypt messages using a cipher



Key Exchange
Public base
x

Private functions
f, g, h, …

Commutative
f(g(x)) = g( f(x))

Pick secret

f

g

Apply to base

f(x)

g(x)

Apply to message

f(g(x))

g( f(x))

=

Lots of them!

Ralph Merkle Martin Hellman Whitfield Diffie

Diffie-Hellman Key Exchange



Cryptography
Public base
x

Private functions
f, g, h, …

Commutative
f(g(x)) = g( f(x))

Need a large space of commutative functions
Mathematical structure called a group

Group must be decided in advance but can be public
Option 1: integer exponentiation, modulo large primes

Option 2: multiplication on elliptic curves modulo large primes



Elliptic Curves
Mathematical functions defined by y2 = x3 + ax + b

Image from @YassineMrabet on Wikipedia

Commutative!

Arithmetic modulo p

Standardized choice curve, , and base p x

Curve P-256: 
 (with specific constants ) 

, 
y2 = x3 − 3x + A A, B
p = 2256 − 2224 + 2192 + 296 − 1 x = B

Curve X25519: 
 (different format) 

, 
y2 = x3 + 48662x2 + x
p = 2255 − 19 x = 9



Implementing This
Need fast arithmetic modulo p > 264

Key exchange a latency bottleneck for establishing connection
Servers have many connections, limited CPU cycles
Implementation must be constant-time for any input

x = x0 + 264x1 + 2128x2 + 2192x3

Represent numbers as vectors of machine integers



Implementing This
x = x0 + 264x1 + 2128x2 + 2192x3
y = y0 + 264y1 + 2128y2 + 2192y3⨯

x0y0

1
x1y0
x0y1

264

x0y2
x1y1
x0y2

2128

x0y3
x1y2
x2y1
x3y0

2192 2256

2255 = 19 (mod 2255 − 19)

x3y1
x2y2
x1y3



Implementing This
x = x0 + 264x1 + 2128x2 + 2192x3
y = y0 + 264y1 + 2128y2 + 2192y3⨯

x0y0

1
x1y0
x0y1

264

x0y2
x1y1
x0y2

2128

x0y3
x1y2
x2y1
x3y0

2192

38
38
38

x3y2
x2y3

38
38

x3y338

xy = c0 + 264c1 + 2128c2 + 2192c3

x3y1
x2y2
x1y3

Lots of other tricks!



Implementations
There are dozens of curves in common use

Each involves multiple non-trivial algorithms

Each combination written by an expert cryptographer

Specialized to many architectures (word size, instructions, …)

 
curves

N  
machines

M 
algorithms

K ⨯ ⨯

Way too expensive, slow, fragile, rigid



Real Bugs

/* XXX: Can it really happen that r<0?, See 
HAC, Alg 14.42, Step 3. If so: Handle it here!*/ 

—The “ed25519” reference implementation

Partial audits have revealed a bug in this software (r1 += 0 + carry 
should be r2 += 0 + carry in amd64-64-24k) 

—TweetNACL: A crypto library in 100 tweets

Even experts make mistakes:

Both by one of the most famous cryptographers alive



Correct by Construction
The vision for Fiat Cryptography



Crypto Pipeline
Goal of private key exchange

Mathematical principles of elliptic curves

Algorithm for multiplication on a curve

High-level code for multiplication modulo p⨯

Assembly or C code for implementationcrypto.s

Decades 
of math

Partial 
Evaluation

Proof 
in Coq

Proof 
in Coq



Advantages
 λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core, 
 uint64_t x19 = (uint64_t) x2 * x2; 
 uint64_t x20 = (uint64_t) (0x2 * x2) * x4; 
 uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6); 
 uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8); 
 uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10; 
 uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12); 
 uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12); 
 uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x4 * x14 + (uint64_t) x2 * x16); 
 uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12)); 
 uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17); 
 uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17)); 
 uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17); 
 uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17)); 
 uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17); 
 uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17); 
 uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17); 
 uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17; 
 uint64_t x36 = (uint64_t) (0x2 * x18) * x17; 
 uint64_t x37 = (uint64_t) (0x2 * x17) * x17; 
 uint64_t x38 = x27 + x37 << 0x4; 
 uint64_t x39 = x38 + x37 << 0x1; 
 uint64_t x40 = x39 + x37; 
 uint64_t x41 = x26 + x36 << 0x4; 
 uint64_t x42 = x41 + x36 << 0x1; 
 uint64_t x43 = x42 + x36; 
 uint64_t x44 = x25 + x35 << 0x4; 
 uint64_t x45 = x44 + x35 << 0x1; 
 uint64_t x46 = x45 + x35; 
 uint64_t x47 = x24 + x34 << 0x4; 
 uint64_t x48 = x47 + x34 << 0x1; 
 uint64_t x49 = x48 + x34; 
 uint64_t x50 = x23 + x33 << 0x4; 
 uint64_t x51 = x50 + x33 << 0x1; 
 uint64_t x52 = x51 + x33; 
 uint64_t x53 = x22 + x32 << 0x4; 
 uint64_t x54 = x53 + x32 << 0x1; 
 uint64_t x55 = x54 + x32; 
 uint64_t x56 = x21 + x31 << 0x4; 
 uint64_t x57 = x56 + x31 << 0x1; 
 uint64_t x58 = x57 + x31; 
 uint64_t x59 = x20 + x30 << 0x4; 
 uint64_t x60 = x59 + x30 << 0x1; 
 uint64_t x61 = x60 + x30; 
 uint64_t x62 = x19 + x29 << 0x4; 
 uint64_t x63 = x62 + x29 << 0x1; 
 uint64_t x64 = x63 + x29; 
 uint64_t x65 = x64 >> 0x1a; 
 uint32_t x66 = (uint32_t) x64 & 0x3ffffff; 
 uint64_t x67 = x65 + x61; 
 uint64_t x68 = x67 >> 0x19; 
 uint32_t x69 = (uint32_t) x67 & 0x1ffffff; 
 uint64_t x70 = x68 + x58; 
 uint64_t x71 = x70 >> 0x1a; 
 uint32_t x72 = (uint32_t) x70 & 0x3ffffff; 
 uint64_t x73 = x71 + x55; 
 uint64_t x74 = x73 >> 0x19; 
 uint32_t x75 = (uint32_t) x73 & 0x1ffffff; 
 uint64_t x76 = x74 + x52; 
 uint64_t x77 = x76 >> 0x1a; 
 uint32_t x78 = (uint32_t) x76 & 0x3ffffff; 
 uint64_t x79 = x77 + x49; 
 uint64_t x80 = x79 >> 0x19; 
 uint32_t x81 = (uint32_t) x79 & 0x1ffffff; 
 uint64_t x82 = x80 + x46; 
 uint32_t x83 = (uint32_t) (x82 >> 0x1a); 
 uint32_t x84 = (uint32_t) x82 & 0x3ffffff; 
 uint64_t x85 = x83 + x43; 
 uint32_t x86 = (uint32_t) (x85 >> 0x19); 
 uint32_t x87 = (uint32_t) x85 & 0x1ffffff; 
 uint64_t x88 = x86 + x40; 
 uint32_t x89 = (uint32_t) (x88 >> 0x1a); 
 uint32_t x90 = (uint32_t) x88 & 0x3ffffff; 
 uint64_t x91 = x89 + x28; 
 uint32_t x92 = (uint32_t) (x91 >> 0x19); 
 uint32_t x93 = (uint32_t) x91 & 0x1ffffff; 
 uint64_t x94 = x66 + (uint64_t) 0x13 * x92; 
 uint32_t x95 = (uint32_t) (x94 >> 0x1a); 
 uint32_t x96 = (uint32_t) x94 & 0x3ffffff; 
 uint32_t x97 = x95 + x69; 
 uint32_t x98 = x97 >> 0x19; 
 uint32_t x99 = x97 & 0x1ffffff; 
 return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96)) 

Verify the code generator, not the code

32-bit square in X25519

High-level properties proven once
Low-level properties enforced by code generator
Prove algorithms, curves, architectures separately

Lower maintenance, more agile



High-level Algorithm

Definition mulmod {n} (a b:tuple Z n) : tuple Z n 

  := let a_a := to_associational a in 

     let b_a := to_associational b in 

     let ab_a := Associational.mul a_a b_a in 

     let abm_a := Associational.reduce s c ab_a in 

     from_associational n abm_a.

Algorithms for lists of arbitrary-size integers:

Uses data structures, ignores overflow, etc…

(x0, x1, x2, x3) ⇝ [(1,x0), (232, x1), …]



Partial Execution

Eval mulmod (a0, a1, a2, a3) (b0, b1, b2, b3)

List handling statically known for a given curve:

Leverages mix of computation and proof in Coq

let (c0, c1, x0) = mul2c(a0, b0, 0) in 
let (c2, c3, x1) = mul2c(a0, b1, c0 + x) in 
…



Size Inference
Replace arbitrary-size with machine integers

let (c0, c1, x0) = mul2c(a0, b0, 0) in 
let (c2, c3, x1) = mul2c(a0, b1, c0 + x) in 
…

32 32 1
32 32 1

Abstract interpretation for integer bounds
Implement and verify transfer functions for each operator
Find smallest machine size to fit given variable



Hints for Analysis
Sometimes code has hard-to-analyze tricks

Bound analysis easier for the first than second
Analyze using the first, implement using the second
Prove the two expressions are equal

ab + cb + cd

(a + c)(b + d) − ad

2 adds (fast), 3 multiplies (slow)

3 adds (fast), 2 multiplies (slow)



Results
Use of Fiat Cryptography in the wild



Code
~38k lines (including boring theorems about numbers)

Each new prime requires minimal code
Automatically generate C code for multiple architectures

Enabled novel experiments with new primes
Scrape suggested primes from crypto mailing list
Generate and time each suggestion

Impossible without automated approach



BoringSSL
Fiat cryptography in BoringSSL, used by Chrome

Verification code used in 50% of all connections
Fiat crypto generated faster 32-bit code than existed
Allowed experimenting with new optimizations



Numeric Results
Competitive with other C, assembly implementations



Ongoing Work
Speeding up code generation with custom reductions:

There is currently a known issue where fesub.c for p256 does not 
manage to complete the build (specialization) within a week on Coq 8.7.0

—BoringSSL Fiat README file 

More backends, including verified compilers:

[…] backend to our Bedrock systems-programming language in Coq, 
which, unlike the original C backend, has a proof of soundness.

—Adam Chlipala, in an email



To do: 
Course feedback 
Final presentations 
Final projects

Conclusion
Next class:


