Fiat Cryptography

Static Analysis section, Lecture 27

Pavel Panchekha

CS 6110, U of Utah 16 April 2020

Final Presentation

Final project presentations due tonight

Record and upload the presentations

All class presentations posted tomorrow

Watch **all other** presentations

Write one question for each other presentation

Answer all questions for your presentation

Final Project

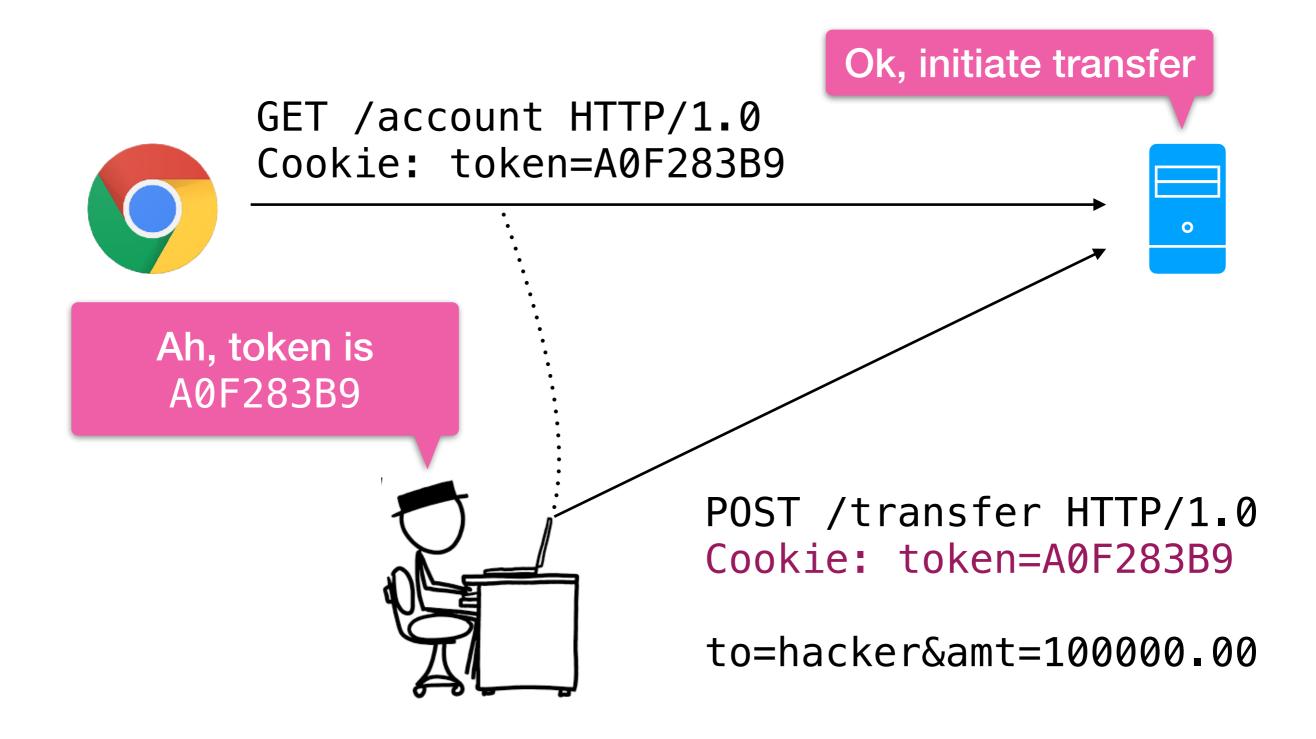
Submit code by Tuesday (deadline changed)

We'll run quicksort on test cases

We'll verify programs, and try to verify false things

Include a **README** locating each project component

For group projects, upload whatever is relevant


Diffs, evaluation scripts, evaluation data

Group projects will be graded by reading code

Internet Cryptography

Why it must be fast and also secure

Encrypted Connections

TLS and HTTPS

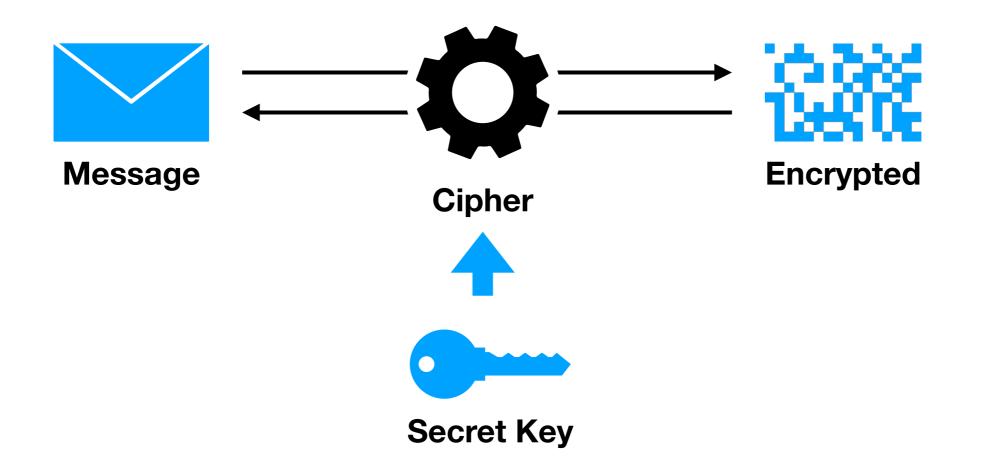
Idea: encrypt network traffic, no eavesdropping

GET /account HTTP/1.0
Cookie: token=A0F283B9

Encryption Key Known

+2Q801GeTw/vdK7y2pu/aeBe/ 3wcsEqr10AU22RfZgNHRyDDoBEm wEnXYLl4QlKU

Encryption Key Unknown


Transport Layer Security: encrypted sockets

HTTPS: HTTP over TLS (over TCP over IP)

Later versions more modular, more secure, more ciphers

How Encryption Works

Encrypt and decrypt messages using a cipher

Key Exchange

Public base

 ${\mathcal X}$

Private functions f, g, h, ...Lots of them!

Commutative f(g(x)) = g(f(x))

Diffie-Hellman Key Exchange

Ralph Merkle

Martin Hellman

Whitfield Diffie

Cryptography

Public base \mathcal{X}

Private functions f, g, h, \ldots

Commutative f(g(x)) = g(f(x))

Need a large space of commutative functions

Mathematical structure called a group

Group must be **decided in advance** but can be public

Option 1: integer exponentiation, modulo large primes

Option 2: multiplication on elliptic curves modulo large primes

Elliptic Cur

Arithmetic modulo *p*

Ma **Curve P-256:** $y^2 = x^3 - 3x + A$ (with specific constants A, B) tative! $p = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1, x = B$ Curve X25519: $y^2 = x^3 + 48662x^2 + x$ (different format) $p = 2^{255} - 19, x = 9$

Standardized choice curve, *p*, and base *x*

Image from @YassineMrabet on Wikipedia

Implementing This

Need fast arithmetic modulo $p > 2^{64}$

Key exchange a **latency bottleneck** for establishing connection Servers have **many connections**, limited CPU cycles Implementation must be **constant-time** for any input

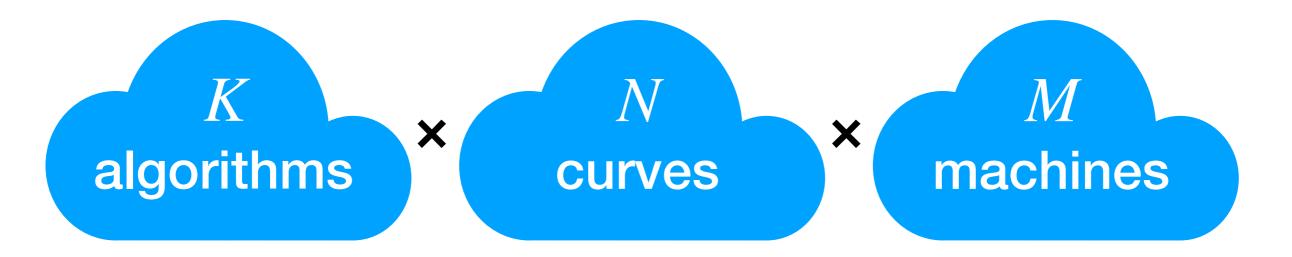
Represent numbers as vectors of machine integers

$$x = x_0 + 2^{64}x_1 + 2^{128}x_2 + 2^{192}x_3$$

Implementing This

$x = x_0 + 2^{64}x_1 + 2^{128}x_2 + 2^{192}x_2$							
×	$x - x_0 + 2$ $y = y_0 + 2$	$2^{64}y_1^{1}$ 2 ²⁵	$5^{5} = 19$ (1	mod 2 ²⁵⁵	- 19)		
	1	2 ⁶⁴	2 ¹²⁸	2 ¹⁹²	2^{256}		
	$x_0 y_0$	$x_1 y_0$	$x_0 y_2$	$x_0 y_3$	$x_{3}y_{1}$		
		$x_0 y_1$	$x_1 y_1$	$x_1 y_2$	$x_2 y_2$		
			$x_0 y_2$	$x_2 y_1$	$x_1 y_3$		
				$x_{3}y_{0}$			

Implementing This


5	$x = x_0 + y_0 + $	*	-	U
	1	2 ⁶⁴	2 ¹²⁸	2^{192}
	$x_0 y_0$	$x_1 y_0$	$x_0 y_2$	$x_0 y_3$
		$x_0 y_1$	$x_1 y_1$	$x_1 y_2$
			$x_0 y_2$	$x_2 y_1$
				$x_{3}y_{0}$
	$38 x_3 y_1$	$38 x_3 y_2$	$38 x_3 y_3$	
	$38 x_2 y_2$		<i>C </i>	Lots of other tricks
	$38 x_1 y_3$			

Implementations

There are **dozens of curves** in common use

Each involves multiple non-trivial algorithms

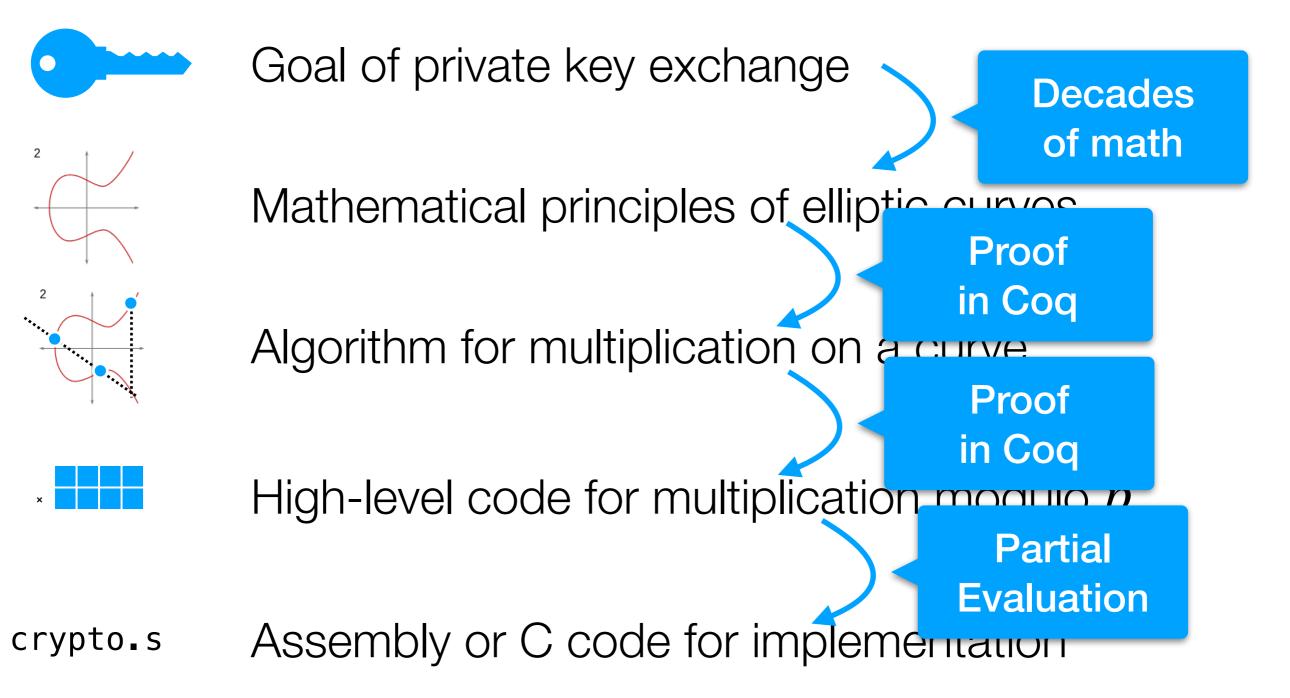
Specialized to many architectures (word size, instructions, ...)

Each combination **written by an expert cryptographer** Way too expensive, slow, fragile, rigid

Real Bugs

Even experts make mistakes:

Partial audits have revealed a bug in this software (r1 += 0 + carry should be r2 += 0 + carry in amd64-64-24k)


-TweetNACL: A crypto library in 100 tweets

Both by one of the most famous cryptographers alive

Correct by Construction

The vision for Fiat Cryptography

Crypto Pipeline

Advantages

λ '(x17, x18, x16, x14, x12, x10, x8, x6, x4, x2)%core, uint64_t x19 = (uint64_t) x2 * x2; uint64_t x20 = (uint64_t) (0x2 * x2) * x4; uint64_t x21 = 0x2 * ((uint64_t) x4 * x4 + (uint64_t) x2 * x6); uint64_t x22 = 0x2 * ((uint64_t) x4 * x6 + (uint64_t) x2 * x8); uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10; uint64_t x23 = (uint64_t) x6 * x6 + (uint64_t) (0x4 * x4) * x8 + (uint64_t) (0x2 * x2) * x10; uint64_t x24 = 0x2 * ((uint64_t) x6 * x8 + (uint64_t) x4 * x10 + (uint64_t) x2 * x12); uint64_t x25 = 0x2 * ((uint64_t) x8 * x8 + (uint64_t) x6 * x10 + (uint64_t) x2 * x14 + (uint64_t) (0x2 * x4) * x12); uint64_t x26 = 0x2 * ((uint64_t) x8 * x10 + (uint64_t) x6 * x12 + (uint64_t) x2 * x14 + (uint64_t) x2 * x16); uint64_t x27 = (uint64_t) x10 * x10 + 0x2 * ((uint64_t) x6 * x14 + (uint64_t) x2 * x18 + 0x2 * ((uint64_t) x4 * x16 + (uint64_t) x8 * x12)); uint64_t x28 = 0x2 * ((uint64_t) x10 * x12 + (uint64_t) x8 * x14 + (uint64_t) x6 * x16 + (uint64_t) x4 * x18 + (uint64_t) x2 * x17); uint64_t x29 = 0x2 * ((uint64_t) x12 * x12 + (uint64_t) x10 * x14 + (uint64_t) x6 * x18 + 0x2 * ((uint64_t) x8 * x16 + (uint64_t) x4 * x17)); uint64_t x30 = 0x2 * ((uint64_t) x12 * x14 + (uint64_t) x10 * x16 + (uint64_t) x8 * x18 + (uint64_t) x6 * x17); uint64_t x31 = (uint64_t) x14 * x14 + 0x2 * ((uint64_t) x10 * x18 + 0x2 * ((uint64_t) x12 * x16 + (uint64_t) x8 * x17)); uint64_t x32 = 0x2 * ((uint64_t) x14 * x16 + (uint64_t) x12 * x18 + (uint64_t) x10 * x17); uint64_t x33 = 0x2 * ((uint64_t) x16 * x16 + (uint64_t) x14 * x18 + (uint64_t) (0x2 * x12) * x17); uint64_t x34 = 0x2 * ((uint64_t) x16 * x18 + (uint64_t) x14 * x17); uint64_t x35 = (uint64_t) x18 * x18 + (uint64_t) (0x4 * x16) * x17; uint64_t x36 = (uint64_t) (0x2 * x18) * x17; uint64_t x37 = (uint64_t) (0x2 * x17) * x17; $uint64_t x38 = x27 + x37 << 0x4;$ uint64_t x39 = x38 + x37 << 0x1; uint64_t x40 = x39 + x37; uint64_t x41 = x26 + x36 << 0x4; uint64_t x42 = x41 + x36 << 0x1; $uint64_t x43 = x42 + x36;$ uint64_t x44 = x25 + x35 << 0x4; uint64 t x45 = x44 + x35 << 0x1; uint64_t x46 = x45 + x35; uint64_t x47 = x24 + x34 << 0x4; uint64_t x48 = x47 + x34 << 0x1; uint64_t x49 = x48 + x34; uint64_t x50 = x23 + x33 << 0x4; uint64_t x51 = x50 + x33 << 0x1; uint64_t x52 = x51 + x33; uint64_t x53 = x22 + x32 << 0x4; uint64_t x54 = x53 + x32 << 0x1; uint64_t x55 = x54 + x32; uint64_t x56 = x21 + x31 << 0x4; uint64_t x57 = x56 + x31 << 0x1; $uint64_t x58 = x57 + x31;$ uint64_t x59 = x20 + x30 << 0x4; uint64_t x60 = x59 + x30 << 0x1; $uint64_t x61 = x60 + x30;$ uint64_t x62 = x19 + x29 << 0x4; uint64_t x63 = x62 + x29 << 0x1; $uint64_t x64 = x63 + x29;$ uint64_t x65 = x64 >> 0x1a; uint3_t x66 = (uint32_t) x64 & 0x3ffffff; uint64_t x67 = x65 + x61; uint64_t x68 = x67 >> 0x19; uint32_t x69 = (uint32_t) x67 & 0x1ffffff; uint64_t x70 = x68 + x58; uint64_t x71 = x70 >> 0x1a; uint32_t x72 = (uint32_t) x70 & 0x3ffffff; uint64_t x73 = x71 + x55; uint64_t x74 = x73 >> 0x19; uint32_t x75 = (uint32_t) x73 & 0x1fffff; uint64_t x76 = x74 + x52; uint64_t x77 = x76 >> 0x1a; uint32_t x78 = (uint32_t) x76 & 0x3ffffff; uint64_t x79 = x77 + x49; uint64_t x80 = x79 >> 0x19; uint32_t x81 = (uint32_t) x79 & 0x1ffffff; $uint64_t x82 = x80 + x46$: uint32_t x83 = (uint32_t) (x82 >> 0x1a); uint32_t x84 = (uint32_t) x82 & 0x3ffffff; uint64_t x85 = x83 + x43; uint32_t x86 = (uint32_t) (x85 >> 0x19); uint32_t x87 = (uint32_t) x85 & 0x1fffff; uint64_t x88 = x86 + x40; uint32_t x89 = (uint32_t) (x88 >> 0x1a); uint32_t x90 = (uint32_t) x88 & 0x3ffffff; uint64_t x91 = x89 + x28; uint32_t x92 = (uint32_t) (x91 >> 0x19); uint32_t x93 = (uint32_t) x91 & 0x1fffff; uint64_t x94 = x66 + (uint64_t) 0x13 * x92; uint32_t x95 = (uint32_t) (x94 >> 0x1a); uint32_t x95 = (uint32_t) (x94 >> 0x1a); uint32_t x96 = (uint32_t) x94 & 0x3ffffff; uint32_t x97 = x95 + x69; uint32_t x98 = x97 >> 0x19; uint32_t x99 = x97 & 0x1ffffff;

Verify the **code generator**, not the code

High-level properties **proven once**

Low-level properties enforced by **code generator**

32-bit square in X25519

Prove algorithms, curves, architectures **separately**

Lower **maintenance**, more agile

return (Return x93, Return x90, Return x87, Return x84, Return x81, Return x78, Return x75, x98 + x72, Return x99, Return x96))

High-level Algorithm

Algorithms for **lists of orbitrony size integers** (x₀, x₁, x₂, x₃) → [(1,x₀), (2³², x₁),...] Definition **mulmou** (x) (a b.tupte 2 m) . tupte Z n := let a_a := to_associational a in let b_a := to_associational b in let ab_a := Associational.mul a_a b_a in let abm_a := Associational.reduce s c ab_a in from_associational n abm_a.

Uses data structures, ignores overflow, etc...

Partial Execution

List handling **statically known** for a given curve:

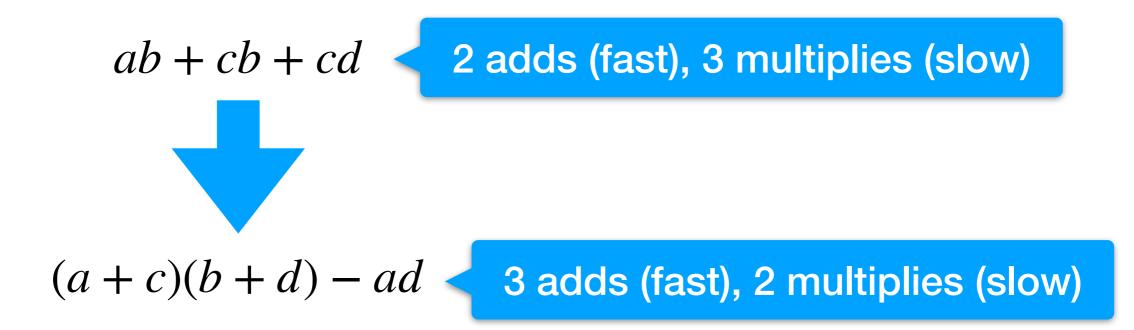
Eval mulmod (a0, a1, a2, a3) (b0, b1, b2, b3)

let (c0, c1, x0) = mul2c(a0, b0, 0) in
let (c2, c3, x1) = mul2c(a0, b1, c0 + x) in
...

Leverages mix of computation and proof in Coq

Size Inference

Replace arbitrary-size with machine integers


let (c0³² c1³² x0¹) = mul2c(a0, b0, 0) in let (c2³² c3³² x1¹) = mul2c(a0, b1, c0 + x) in ...

Abstract interpretation for integer bounds

- Implement and verify transfer functions for each operator
- Find **smallest machine size** to fit given variable

Hints for Analysis

Sometimes code has hard-to-analyze tricks

Bound analysis **easier** for the first than second

Analyze using the first, implement using the second

Prove the two expressions are equal

Results Use of Fiat Cryptography in the wild

Code

~38k lines (including boring theorems about numbers) Each new prime requires minimal code Automatically generate C code for multiple architectures

Enabled **novel experiments** with new primes **Scrape suggested primes** from crypto mailing list Generate and time each suggestion

Impossible without automated approach

BoringSSL

Fiat cryptography in **BoringSSL**, used by Chrome

Verification code used in **50% of all connections**

- Fiat crypto generated faster 32-bit code than existed
- Allowed experimenting with new optimizations

Numeric Results

Competitive with other C, assembly implementations

Implementation	CPU cycles	μs at 2.6GHz
amd64-64 asm	145008	56
amd64-51 asm	154248	59
sandy2x asm	154688	59
donna-c64 C	160352	62
this work, tweaked C	168364	65
this work, generated C	182580	70
OpenSSL C	348072	134
ref10C	356716	137
refC	6044504	2325

Ongoing Work

Speeding up code generation with custom reductions:

There is currently a known issue where fesub.c for p256 does not manage to complete the build (specialization) within a week on Coq 8.7.0 —BoringSSL Fiat README file

More backends, including verified compilers:

[...] backend to our Bedrock systems-programming language in Coq, which, unlike the original C backend, has a proof of soundness.

-Adam Chlipala, in an email

Next class: Conclusion

To do:
Course feedback
Final presentations
Final projects