
Inductive Types
Static Analysis section, Lecture 25

Pavel Panchekha
CS 6110, U of Utah
9 April 2020

No “free information” from introducing intermediate steps

EliminationIntroduction

Proof rules
Introduction and elimination rules for and:

 a b
a ∧ b a

a ∧ b
b

a ∧ b

These are basically opposites!

Implication

 Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : a → b

 Γ ⊢ f : a → b Γ ⊢ e : a
 Γ ⊢ (f e) : b

Mixing the Two
If proofs are programs and propositions are types…

One language for proofs and programs1.

Syntax reused for programs and proofs2.

Data structures mix programs and proofs3.

Proof or program? You decide!4.

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Propositions
as Types

Inductive
Types

Type
Dependency

Abstract Interpretation Dependent Types

Inductive Types
Defining new inductive data types

Natural numbers, lists, and trees

Compiling recursion to induction
Finding recursive calls and replacing them

Proof by recursion over a data type
Constructing proofs recursively

Inductive Types
Natural numbers, lists, and trees

New Data Types
Pairs and functions have proof analogs

But what about natural numbers, lists, trees, etc?

Recall axioms of Peano arithmetic:

Natural numbers are 0 or (n + 1)-

Define plus / times via (n+1)-

Induction axiom-

Constructors
Defines natural numbers via their constructors:

∀n, n = 0 ∨ ∃n′ , n = n′ + 1

∀n′ , 0 ≠ n′ + 1

All natural numbers are 0 or (n + 1)-

0 and (n + 1) are different-

The Pattern
Defining “or” terms via their constructors:

∀c, (∃a, c = lft a) ∨ (∃b, c = rgt b)

∀a, ∀b, lft a ≠ rgt b

All “or” terms are lft or rgt-

lft and rgt are different-

The Pattern
Defining “and” terms via their constructors:

∀c, ∃a, ∃b, c = (a, b)

???

All “and” terms are (a, b)-

(a, b) are different-

Introduction Rules
Constructors define introduction rules for a data type:

0 : nat n + 1 : nat
n : nat

What about elimination rules?

Analogy from OR
Or has two constructors:

lft pa : a ∨ b rgt pb : a ∨ b
pb : b

The elimination rules has two extra assumptions:

pa : a

cases(p, fa, fb) : c
 fa : a → c p : a ∨ b fb : b → c

nat has two constructors

Analogy for Nat
nat has two constructors:

0 : nat n + 1 : nat
n : nat

The elimination rules has two extra assumptions:

rec(n, f0, f+1) : c
 f0 : c n : nat f+1 : nat → nat

To Induction

rec(n, f0, f+1) : c
 f0 : c n : nat f+1 : nat → nat

Meanwhile, the induction rule:

P(n)
 P(0) n : nat P(n) → P(n + 1)

Key: replace nat by a property of nat

Compiling Recursion
Recursion via induction

Generalizing
Define new types by defining their constructors:

Constructors have arguments, including from that type

Each constructor is an introduction rule

Per-type elimination rule based on constructors
Function takes constructor arguments, returns c

Induction rule generalizes elimination rule
Replace output type with property c P(constructor)

Recursive Definitions

def length : ∀τ, list τ → nat

Normal recursive function examines constructors:

Define recursive function via induction:

P(l)
 P([]) l : list τ ∀x, ∀l′ , P(l′) → P(x :: l′)

| nil := 0
| (cons a r) := length r + 1

Recursive Definitions

 :=
λ l, list.rec l (λ l, nat)
(λ, 0)
(λ x l length_l, length_l + 1)

Normal recursive function examines constructors:

Define recursive function via induction:

P(l)
 P([]) l : list τ ∀x, ∀l′ , P(l′) → P(x :: l′)

def length : ∀τ, list τ → nat

Uses of Induction
Induction can prove properties of all numbers

Prove base case, P(0)
Prove inductive case, P(n) → P(n + 1)

Induction can also compute recursive function
Implement base case, f(0)
Implement recursive case, , in terms of f(n + 1) f(n)

Uses of Induction
Induction can prove properties of all numbers

Prove base case, P(0)
Prove inductive case, P(n) → P(n + 1)

Induction can also compute recursive function
Implement base case, f(0)
Implement recursive case, f(n) ↦ f(n + 1)

Course Updates
Final Projects

Final Presentation
Final project presentations due Thursday

Double the normal length (8 minutes solo, 16 minutes group)

Record and upload the presentations

Watch and submit questions for others’ presentations

Presentations should stand alone
Cover every part of the project; show what you achieved

Discuss how you checked that the results are good

Final Project
Submit code for final project same day as presentations

We’ll run quicksort on test cases

We’ll verify programs, and try to verify false things

Group projects will be graded by reading code

If you’re behind due to coronavirus, email me

Proof by Recursion
Proofs as Programs

A simple proof
Consider proving this theorem:

∀n, 0 ≤ n

Let’s prove it by induction:

P(0) = 0 ≤ 0

P(n) → P(n + 1) = 0 ≤ n → 0 ≤ (n + 1)

def t : ∀n, 0 <= n

nat.rec_on n

le.refl 0 : 0 <= 0

λ n pf, le.step pf

A simple proof

theorem t : ∀ n, 0 ≤ n :=
λ n, nat.rec_on n
(le.refl 0)
(λ n' pf, le.step pf)

Proof by induction, as code:

“Uncompile” to recursive function, as code:

def t : ∀ n, 0 ≤ n
| 0 := le.refl 0
| (n + 1) := le.step (t n)

Recursion + Induction
Proof by induction is recursively computing a proof

Prove → Implement (of type)P(0) f(0) P(0)

Prove → Implement P(n) → P(n + 1) f(n) ↦ f(n + 1)

When proofs are programs, induction is recursion!

To do:
Course feedback
Class projects

Type Dependency
Next class:

Inductive Types
Defining new inductive data types

Natural numbers, lists, and trees

Compiling recursion to induction
Finding recursive calls and replacing them

Proof by recursion over a data type
Constructing proofs recursively

Predicates

Propositions

Types Too

ARE

Induction

Proofs

On

Dependency

Coordinating

Terms

Multiple

To do:
Course feedback
Class projects

Type Dependency
Next class:

