Static Analysis section, Lecture 24

Pavel Panchekha

CS 6110, U of Utah 7 April 2020

What's in an Analysis?

Ingredients you need to define a **task-specific** analysis:

A set of **conditions** for variables and states Each condition *c* corresponds to a property $P_c(x)$

Constants, f(x, y), ...

A merge function for conditions If $c = merge(c_1, c_2)$, then $\forall x, P_{c_1}(x) \lor P_{c_2}(x) \rightarrow P_c(x)$

Transfer functions for some functions If $c = \text{trans}_f(c_1)$, then $\forall x, P_{c_1}(x) \rightarrow P_c(f(x))$

Flow-sensitivity

Sometimes, if statements provide additional info: $trans_0() = nn$ $if i \ge 0$: $refi_{\ge}(?, nn) = (nn, nn)$ return a[i] else: i:nnreturn a[len(a) - i]

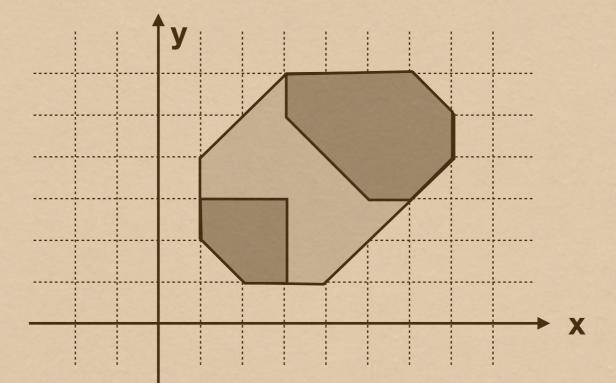
Add refinement functions for the analysis:

If $(c'_1, c'_2) = \operatorname{refi}_R(c_1, c_2)$, then $\forall x, \forall y, P_{c_1}(x) \land P_{c_2}(y) \land T(x, y) \rightarrow P_{c'_1}(x) \land P_{c'_2}(y)$

Inequality analysis

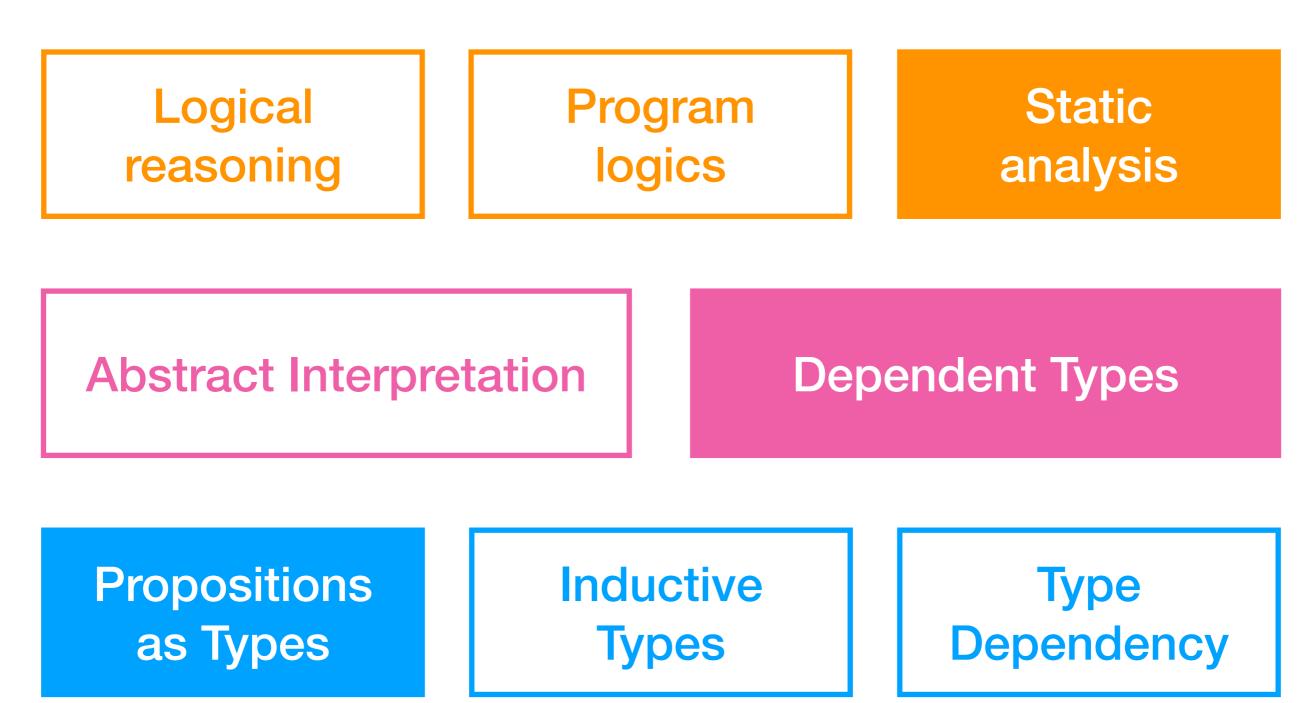
Octagon domain: x, y, x + y, and x - y ranges

Octagon union handles the four ranges independently



When x : (a, b) and y : (c, d), bounds on $x \pm y$

Class Progress



A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs

Computations that return values and proofs

Type theory as a proof language

Assigning terms to proof rules, types to terms

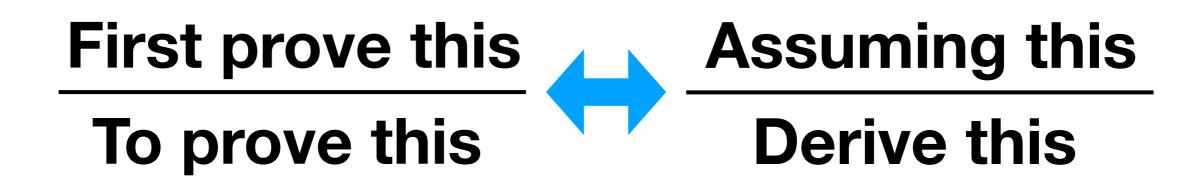
Proof Rules Introduction and Elimination Rules

Proof rules

Remember these **horizontal line** things?

$$x \notin \Gamma \frac{[\Gamma, x] p}{[\Gamma] \forall x, p} \qquad [\Gamma] e \frac{[\Gamma] p[x := e]}{[\Gamma] \exists x, p}$$

These are called **proof rules**:



Proof rules

Proof rules for proving **and**:

$\begin{array}{c|c} a & b \\ \hline a \wedge b \end{array}$

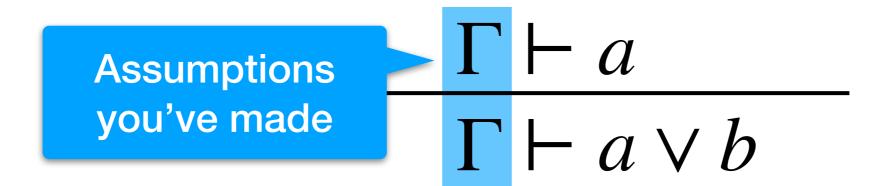
Proof rules for proving **or**:

 $\begin{array}{c} a \\ a \lor b \\ a \lor b \end{array}$

Proof Contexts

Theorems often involve hypothetical reasoning

"Let *x* be a positive integer. Then ..."

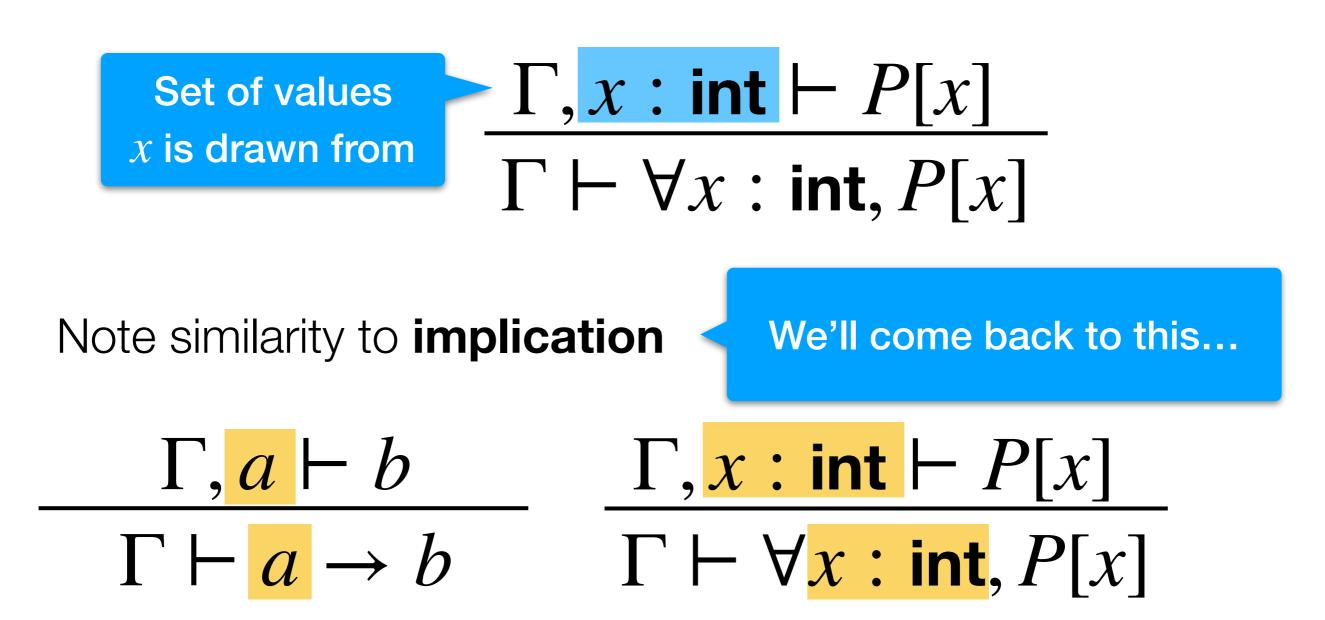


Implications allow you to describe hypotheticals

 $\begin{array}{l} \text{Hypothesis} \\ \text{to assumption} \end{array} > \hline{\Gamma, a} \vdash b \\ \hline{\Gamma} \vdash a \rightarrow b \end{array}$

Proof Contexts

Assumptions include variable bindings



Proof Contexts

Variable binding itself is **hypothetical**

- $a: int, b: int \vdash a + b: int$
- $a : float, b : float \vdash a + b : float$

Variable binding itself is **hypothetical**

$$\Gamma \vdash P[e] \qquad \Gamma \vdash e : int$$
$$\Gamma \vdash \exists x : int, P[x]$$

Elimination Rules

So far rules had logical connective **below the line**

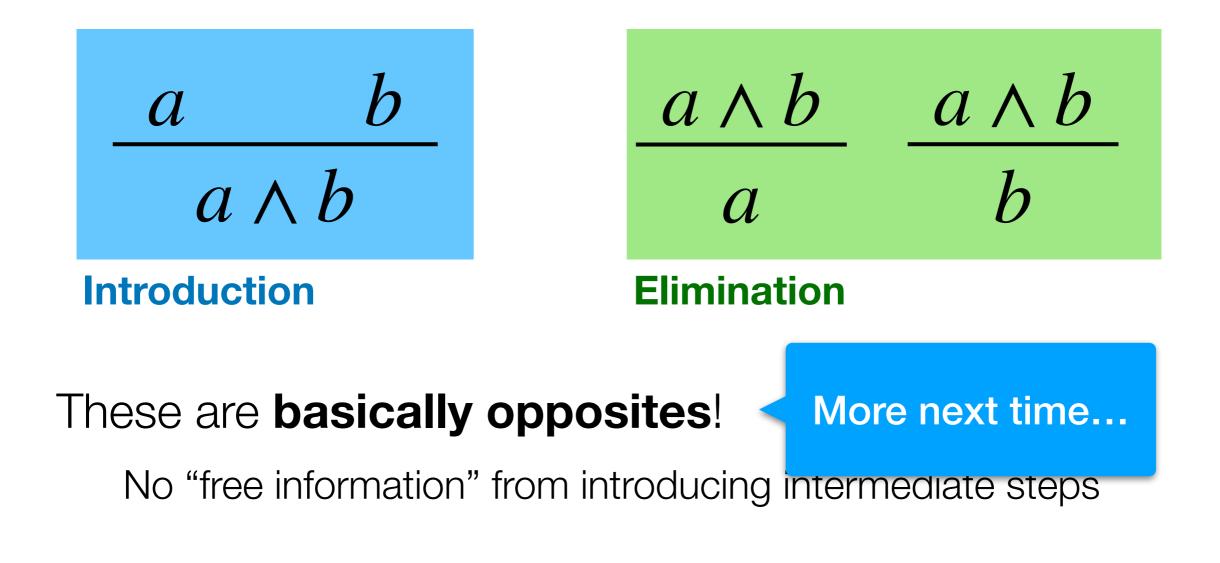
Called introduction rules, they "introduce" a connective

First prove thisAssuming thisTo prove thisDerive this

Need opposite rules for **handling assumptions** The opposite of "introduction" is "elimination" rules

Proof rules

Introduction and elimination rules for **and**:



More Elimination

Elimination rule for **implication** ("modus ponens"):

$$a \rightarrow b$$
 a b

Elimination rule for **or** ("case analysis"):

$$a \to c$$
 $a \lor b$ $b \to c$

Exercise

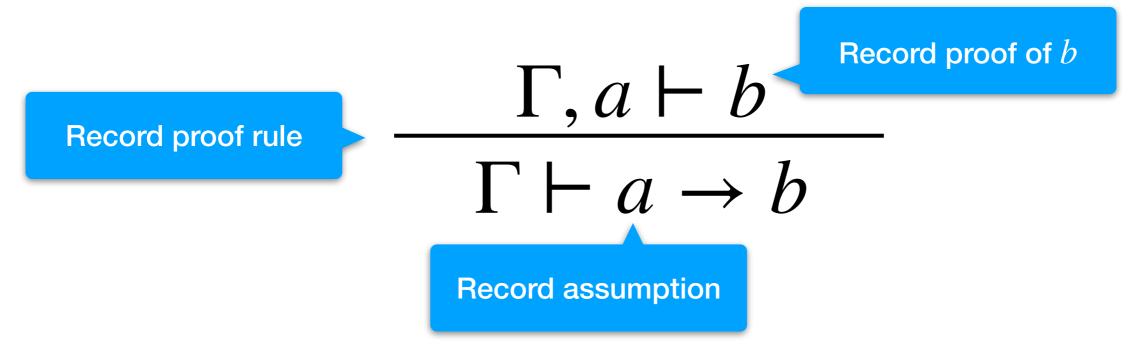
Write introduction and elimination rules for negation

Remember: $\neg p \leftrightarrow (p \rightarrow \bot)$

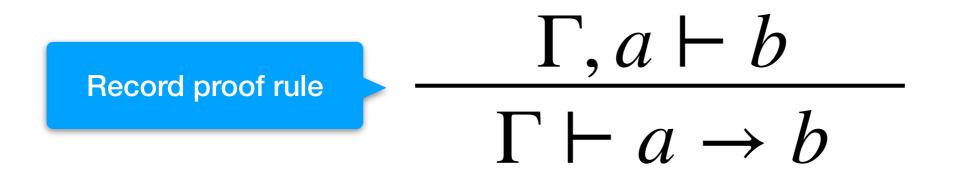
Proof Terms Program : Type :: Proof : Proposition

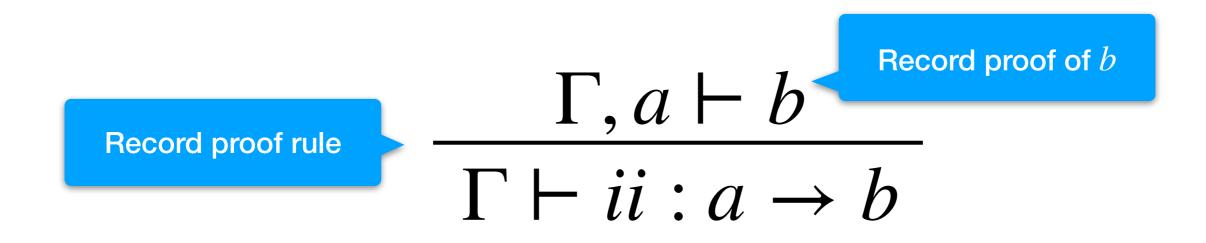
A valid proof is a series of **proof rules**:

We'd like to **record which rules** were used



Need to design a concise language for recording this

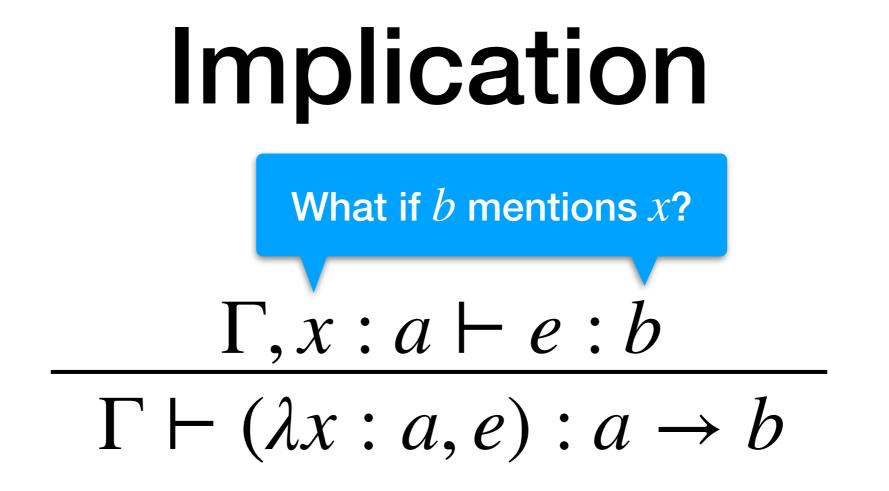




Record proof of *b* $\Gamma, a \vdash e : b$ $\Gamma \vdash ii(e) : a \rightarrow b$ **Record assumption**

 $\Gamma, x : a \vdash e : b$ $\Gamma \vdash ii(x : a, e) : a \rightarrow b$ Change s Record assumption

 $\frac{\Gamma, x : a \vdash e : b}{\Gamma \vdash (\lambda x : a, e) : a \rightarrow b}$



 $\frac{\Gamma \vdash f : a \to b}{\Gamma \vdash (fe) : b}$

Generalized Implication

What if *b* mentions *x*? $\Gamma, x : a \vdash e : b$ $\Gamma \vdash (\lambda x : a, e) : \forall x : a, b$

 $\frac{\Gamma \vdash f : \forall x : a, b}{\Gamma \vdash (fe) : b}$

And Terms

Proofs of "and" form **structures**:

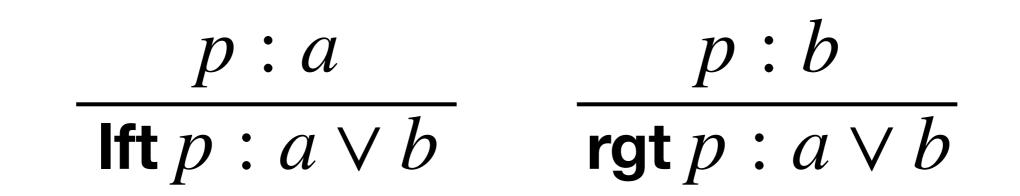
$$p_1: a \quad p_2: b$$

 $(p_1, p_2): a \land b$

 $\begin{array}{c} p:a \wedge b \\ \hline \mathbf{fst} \ p:a \end{array} & \begin{array}{c} q:a \wedge b \\ \hline \mathbf{snd} \ p:b \end{array} \end{array}$

Or terms

Proofs of "or" form **unions**:



$$\begin{array}{ccc} f_a: a \to c & p: a \lor b & f_b: b \to c \\ \mathbf{cases}(p, f_a, f_b): c \end{array}$$

Proofs as Programs

Proofs are composed of simple **proof rules**

For each logical operation, introduction and elimination rules

Proof terms record which proof rules are used Special syntax for each introduction and elimination rule

Proof terms look like programs

Proofs built using functions, structures, and unions

Proofs as programs

Propositions as types

Mixing the Two

If proofs are programs and propositions are types...

- 1. One language for proofs **and** programs
- 2. Syntax **reused** for programs and proofs
- 3. Data structures **mix** programs and proofs
- 4. Proof or program? **You decide!**

Next class: Inductive Types

To do:□ Course feedback□ Class projects

A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs

Computations that return values and proofs

Type theory as a proof language

Assigning terms to proof rules, types to terms

CONPUTATIONS

PROOFS

ARE

PROGRAMS TOO

INDUCTION

RECURSION

TERMINATION

TRICKS

TECHNIQUE

Next class: Inductive Types

To do:□ Course feedback□ Class projects