
Propositions as Types
Static Analysis section, Lecture 24

Pavel Panchekha
CS 6110, U of Utah
7 April 2020

What’s in an Analysis?
Ingredients you need to define a task-specific analysis:

A set of conditions for variables and states—

A merge function for conditions—

Transfer functions for some functions—

Constants,
, …f(x, y)

Each condition corresponds to a property c Pc(x)

If , then c = merge(c1, c2) ∀x, Pc1
(x) ∨ Pc2

(x) → Pc(x)

If , then c = transf(c1) ∀x, Pc1
(x) → Pc(f(x))

Flow-sensitivity
Sometimes, if statements provide additional info:

if i >= 0:
return a[i]

else:
return a[len(a) - i]

 trans0() = nn
refi≥(?, nn) = (nn, nn)

Add refinement functions for the analysis:
If , then (c′ 1, c′ 2) = refiR(c1, c2)
∀x, ∀y, Pc1

(x) ∧ Pc2
(y) ∧ T(x, y) → Pc′ 1

(x) ∧ Pc′ 2
(y)

i : nn

Inequality analysis

Octagon domain: , , , and rangesx y x + y x − y
Octagon union handles the four ranges independently

x

y

When and , bounds on x : (a, b) y : (c, d) x ± y

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Propositions
as Types

Inductive
Types

Type
Dependency

Abstract Interpretation Dependent Types

Propositions as Types
A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs
Computations that return values and proofs

Type theory as a proof language
Assigning terms to proof rules, types to terms

Proof Rules
Introduction and Elimination Rules

Proof rules
Remember these horizontal line things?

[Γ] ex ∉ Γ
[Γ] ∀x, p
[Γ, x] p

[Γ] ∃x, p
[Γ] p[x := e]

These are called proof rules:

First prove this
To prove this

Assuming this
Derive this

Proof rules
Proof rules for proving and:

 a b
a ∧ b

Proof rules for proving or:

a
a ∨ b

b
a ∨ b

Proof Contexts
Theorems often involve hypothetical reasoning

Γ ⊢ a
Γ ⊢ a ∨ b

“Let be a positive integer. Then …”x

Assumptions
you’ve made

Implications allow you to describe hypotheticals

Γ, a ⊢ b
Γ ⊢ a → b

Hypothesis
to assumption

Proof Contexts
Assumptions include variable bindings

Γ, x : int ⊢ P[x]
Γ ⊢ ∀x : int, P[x]

Set of values
 is drawn fromx

Note similarity to implication

Γ, a ⊢ b
Γ ⊢ a → b

Γ, x : int ⊢ P[x]
Γ ⊢ ∀x : int, P[x]

We’ll come back to this…

Proof Contexts
Variable binding itself is hypothetical

a : int, b : int ⊢ a + b : int

a : float, b : float ⊢ a + b : float

Variable binding itself is hypothetical

Γ ⊢ P[e]
Γ ⊢ ∃x : int, P[x]

Γ ⊢ e : int

Elimination Rules

First prove this
To prove this

Assuming this
Derive this

So far rules had logical connective below the line

Need opposite rules for handling assumptions

Called introduction rules, they “introduce” a connective

The opposite of “introduction” is “elimination” rules

No “free information” from introducing intermediate steps

EliminationIntroduction

Proof rules
Introduction and elimination rules for and:

 a b
a ∧ b a

a ∧ b
b

a ∧ b

These are basically opposites! More next time…

More Elimination
Elimination rule for implication (“modus ponens”):

b
 a → b a

Elimination rule for or (“case analysis”):

c
 a → c a ∨ b b → c

Exercise
Write introduction and elimination rules for negation

Remember: ¬p ↔ (p → ⊥)

Proof Terms
Program : Type :: Proof : Proposition

Recording Proofs
A valid proof is a series of proof rules:

We’d like to record which rules were used

Record proof of b

Record proof rule

Record assumption

Need to design a concise language for recording this

Γ, a ⊢ b
Γ ⊢ a → b

Recording Proofs

Γ, a ⊢ b
Γ ⊢ a → b

Record proof rule

Recording Proofs

Γ, a ⊢ b
 Γ ⊢ ii : a → b

Record proof of b

Record proof rule

Recording Proofs

 Γ, a ⊢ e : b
 Γ ⊢ ii(e) : a → b

Record assumption

Record proof of b

Recording Proofs

 Γ, x : a ⊢ e : b
 Γ ⊢ ii(x : a, e) : a → b

Change syntaxRecord assumption

Recording Proofs

 Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : a → b

Implication

 Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : a → b

 Γ ⊢ f : a → b Γ ⊢ e : a
 Γ ⊢ (f e) : b

What if mentions ? b x

Generalized Implication

 Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : ∀x : a, b

 Γ ⊢ f : ∀x : a, b Γ ⊢ e : a
 Γ ⊢ (f e) : b

What if mentions ? b x

And Terms

 p1 : a p2 : b
(p1, p2) : a ∧ b

fst p : a
p : a ∧ b

Proofs of “and” form structures:

snd p : b
q : a ∧ b

Or terms

 fa : a → c fb : b → cp : a ∨ b
cases(p, fa, fb) : c

lft p : a ∨ b
p : a

Proofs of “or” form unions:

rgt p : a ∨ b
p : b

Propositions as Types
Proofs as Programs

Propositions as Types
Proofs are composed of simple proof rules

For each logical operation, introduction and elimination rules

Proof terms record which proof rules are used
Special syntax for each introduction and elimination rule

Proof terms look like programs
Proofs built using functions, structures, and unions

Propositions as Types

Proofs as programs

Propositions as types

Mixing the Two
If proofs are programs and propositions are types…

One language for proofs and programs1.

Syntax reused for programs and proofs2.

Data structures mix programs and proofs3.

Proof or program? You decide!4.

To do:
Course feedback
Class projects

Inductive Types
Next class:

Propositions as Types
A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs
Computations that return values and proofs

Type theory as a proof language
Assigning terms to proof rules, types to terms

Computations

Proofs

Programs Too

ARE

Induction

Proof

Recursion

By

Termination

Tricks

Technique

And

To do:
Course feedback
Class projects

Inductive Types
Next class:

