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What’s in an Analysis?
Ingredients you need to define a task-specific analysis:

A set of conditions for variables and states—

A merge function for conditions—

Transfer functions for some functions—

Constants,
, …f(x, y)

Each condition  corresponds to a property c Pc(x)

If , then c = merge(c1, c2) ∀x, Pc1
(x) ∨ Pc2

(x) → Pc(x)

If , then c = transf(c1) ∀x, Pc1
(x) → Pc( f(x))



Flow-sensitivity
Sometimes, if statements provide additional info:

if i >= 0: 
return a[i] 

else: 
return a[len(a) - i]

 trans0() = nn
refi≥(?, nn) = (nn, nn)

Add refinement functions for the analysis:
If , then (c′ 1, c′ 2) = refiR(c1, c2)
∀x, ∀y, Pc1

(x) ∧ Pc2
(y) ∧ T(x, y) → Pc′ 1

(x) ∧ Pc′ 2
(y)

i : nn



Inequality analysis

Octagon domain: , , , and  rangesx y x + y x − y
Octagon union handles the four ranges independently

x

y

When  and , bounds on x : (a, b) y : (c, d) x ± y
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Propositions as Types
A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs
Computations that return values and proofs

Type theory as a proof language
Assigning terms to proof rules, types to terms



Proof Rules
Introduction and Elimination Rules



Proof rules
Remember these horizontal line things?

[Γ] ex ∉ Γ
[Γ] ∀x, p
[Γ, x] p

[Γ] ∃x, p
[Γ] p[x := e]

These are called proof rules:

First prove this
To prove this

Assuming this
Derive this



Proof rules
Proof rules for proving and:

          a b
a ∧ b

Proof rules for proving or:

a
a ∨ b

b
a ∨ b



Proof Contexts
Theorems often involve hypothetical reasoning

Γ ⊢ a
Γ ⊢ a ∨ b

“Let  be a positive integer. Then …”x

Assumptions 
you’ve made

Implications allow you to describe hypotheticals

Γ, a ⊢ b
Γ ⊢ a → b

Hypothesis 
to assumption



Proof Contexts
Assumptions include variable bindings

Γ, x : int ⊢ P[x]
Γ ⊢ ∀x : int, P[x]

Set of values 
 is drawn fromx

Note similarity to implication

Γ, a ⊢ b
Γ ⊢ a → b

Γ, x : int ⊢ P[x]
Γ ⊢ ∀x : int, P[x]

We’ll come back to this…



Proof Contexts
Variable binding itself is hypothetical

a : int, b : int ⊢ a + b : int

a : float, b : float ⊢ a + b : float

Variable binding itself is hypothetical

Γ ⊢ P[e]
Γ ⊢ ∃x : int, P[x]

Γ ⊢ e : int



Elimination Rules

First prove this
To prove this

Assuming this
Derive this

So far rules had logical connective below the line

Need opposite rules for handling assumptions

Called introduction rules, they “introduce” a connective

The opposite of “introduction” is “elimination” rules



No “free information” from introducing intermediate steps

EliminationIntroduction

Proof rules
Introduction and elimination rules for and:

          a b
a ∧ b a

a ∧ b
b

a ∧ b

These are basically opposites! More next time…



More Elimination
Elimination rule for implication (“modus ponens”):

b
                a → b a

Elimination rule for or (“case analysis”):

c
                                a → c a ∨ b b → c



Exercise
Write introduction and elimination rules for negation

Remember: ¬p ↔ (p → ⊥ )



Proof Terms
Program : Type :: Proof : Proposition



Recording Proofs
A valid proof is a series of proof rules:

We’d like to record which rules were used

Record proof of b

Record proof rule

Record assumption

Need to design a concise language for recording this

Γ, a ⊢ b
Γ ⊢ a → b



Recording Proofs

Γ, a ⊢ b
Γ ⊢ a → b

Record proof rule



Recording Proofs

Γ, a ⊢ b
 Γ ⊢ ii : a → b

Record proof of b

Record proof rule



Recording Proofs

 Γ, a ⊢ e : b
 Γ ⊢ ii(e) : a → b

Record assumption

Record proof of b



Recording Proofs

  Γ, x : a ⊢ e : b
 Γ ⊢ ii(x : a, e) : a → b

Change syntaxRecord assumption



Recording Proofs

  Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : a → b



Implication

  Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : a → b

             Γ ⊢ f : a → b Γ ⊢ e : a
 Γ ⊢ ( f e) : b

What if  mentions ? b x



Generalized Implication

  Γ, x : a ⊢ e : b
 Γ ⊢ (λx : a, e) : ∀x : a, b

             Γ ⊢ f : ∀x : a, b Γ ⊢ e : a
 Γ ⊢ ( f e) : b

What if  mentions ? b x



And Terms

          p1 : a p2 : b
(p1, p2) : a ∧ b

fst p : a
p : a ∧ b

Proofs of “and” form structures:

snd p : b
q : a ∧ b



Or terms

                             fa : a → c fb : b → cp : a ∨ b
cases(p, fa, fb) : c

lft p : a ∨ b
p : a

Proofs of “or” form unions:

rgt p : a ∨ b
p : b



Propositions as Types
Proofs as Programs



Propositions as Types
Proofs are composed of simple proof rules

For each logical operation, introduction and elimination rules

Proof terms record which proof rules are used
Special syntax for each introduction and elimination rule

Proof terms look like programs
Proofs built using functions, structures, and unions



Propositions as Types

Proofs as programs

Propositions as types



Mixing the Two
If proofs are programs and propositions are types…

One language for proofs and programs1.

Syntax reused for programs and proofs2.

Data structures mix programs and proofs3.

Proof or program? You decide!4.



To do: 
Course feedback 
Class projects

Inductive Types
Next class:



Propositions as Types
A formal language for writing down proofs

Introduction and elimination rules

Mixing proofs and programs
Computations that return values and proofs

Type theory as a proof language
Assigning terms to proof rules, types to terms



Computations

Proofs

Programs Too

ARE



Induction

Proof

Recursion

By



Termination

Tricks

Technique

And



To do: 
Course feedback 
Class projects

Inductive Types
Next class:


