Common Domains

Static Analysis section, Lecture 20

Pavel Panchekha

CS 6110, U of Utah
24 March 2020

Video Lecture

Online lecture for the rest of the term
Lectures recorded, re-watch / stream on Youtube
Attendance cancelled: not taken, everyone marked present

How to ask questions during video lectures:

Stay muted; hold space bar to temporarily unmute

Raise hand to ask a question; I'll call on you

Partici |
Technical support over chat with Manasi } articipants pane

Simplified conditions

Conditions: which variables known to be non-negative
Need to know: which expressions produce non-negative results

C=0aE=0) =0 (20)x(z20)w (20) =0 == 0 C=0)

T e S R L

= TG gD
{1=206&80) 208& m=20}
L[m]

Simple rules instead of solver queries: fast

Loops

If statements require “or” for simplified conditions

{xz@}while‘e/{x*=—\1;‘}{???}
X = 0 \/ X 777

Xt v X 2

X Tl 2

Repeat loop analysis until result stops changing

Example

OR operation produces a graph structure
A — B when (A OR B) = B; structure called a lattice

—

e

%ﬂ*@

Class Progress

Logical Program Static
reasoning logics analysis
Abstract Interpretation Dependent Types
Abstract Common Checker
Interpretation Domains Framework

Common Domains

Lay out complete definition of a task-specific analysis

Conditions, merge, transfer functions, refinements

Interval domain for integer ranges

And how to deal with infinite-height lattices

Inequality domain for tracking integer order

And how to deal with relational lattices

What’s in an Analysis?

Ingredients you need to define a task-specific analysis:

— A set of conditions for variables and states
Each condition ¢ corresponds to a property Pc(x)

— A merge function for conditions

m If c = merge(c, ¢,), then Vx, Pcl(x) Vv Pcz(x) — P (x)

— Transfer functions for some functions
If ¢ = transg(cy), then Vx, Pcl(x) — P (f(x))

Non-Negativity
A set of conditions for variables and states

c=nn|?

?
RS LA T Py(x) V P, (x) = Py(x)
nn nn
? ? ?

Transfer functions for some functions
+ om0 Py(x) V P, (y) = Pyx +y)

...

...

Applying the Analysis

These pieces let you analyze each function:
- Initialize parameters to unknown condition
- At each step, over-approximate results
- Merge results of conditional expressions

- Repeat + merge until loops stabilize

This leads to a fast, scalable analysis

Non-Negativity

Let’s apply this analysis step-by-step: 5 5 5
a lo | hi m

while ..:
m= (lo + hi) / 2

..

if ..:
lo = trans,() = nn
trans_ (nn, nn) = nn
else:

trans., (nn, nn) = nn
hi

Flow-sensitivity

Sometimes, if statements provide additional info:

if 1 >= 0:

return al[il I now known to be non-negative

else:

return allen(a) + i]

Add refinement functions for the analysis:

If (¢y, ¢5) = refig(cy, ¢,), then
an vy? Pcl(x) A Pc2(y) A R(.X, y) — Pci(x) A Pcé(y)

Flow-sensitivity

This requires refinement functions for the analysis:

If (¢}, ¢5) = refir(cy, ¢;), then
Vx,Vy, P, (x) AP, (y) ANT(x,y) = P.(x) A P(y)

For comparisons in the non-negativity analysis:

--------------------- Mt P AP, (AKX 2y
nn inn nni nn,-
--------------------- ST S P00 AP, ()

Usually add negations of comparisons as well

Flow-sensitivity

Sometimes, if statements provide additional info;

transy() = nn

kN AR refis(7, nn) = (an, nn)

return alil

S

return allen(a) - i]

Add refinement functions for the analysis:

If (¢y, ¢5) = refig(cy, ¢,), then
Vx,Vy, P, (x) AP, (y) ANT(x,y) = P.(x) A P(y)

Infinite height lattices

Making sure loop analyses still terminate

Interval analysis

Want to track valid ranges for integer variables:
Four kinds of ranges: (a, b), (— o0, b), (a, 00), and ?

P,px)=a<x<b P, =a<x

P(—Oo,b)(x) =X S b Pf)(X) — T

Merge function computes min and max:

merge((a, b), (c,d)) = (min(a, c), max(b, d))

Interval analysis

Transfer functions for constants, addition, negation:
trans; () = (i, 1)
trans.((a, b), (c,d)) = (min(a, ¢), max(b, d))
trans_((a,b)) = (-b, —a)

Refinement functions for comparison:

refi.((a, b), (c,d)) = (a, min(b, d)), (max(a, c), d)

Example

Let’s apply this analysis step-by-step: i len(output)

Output — [u®n’ “2AX", u???n]

..

1 = popcount(x)

..

if 1 >= len(output):

..

i = len(output) - 1

..

..

return output[il

Infinite Height

Lattice of intervals has Infinitely-long paths

Creates a problem for analyzing loops

i=0; while .. { i++ }

©0 \/ o1
on \V 2

©2 \ 3

Infinite Height

One idea: ban ranges that are too wide
Range (a, b) only valid when b — a < 1000

i=0; while .. { i++ }

(0, 0) \/ (1, 1)
on \V 2

Infinite Height

One idea: ban ranges that are too wide
Range (a, b) only valid when b — a < 1000

Only inside loops!

Wide lattice for loops, narrow lattice outside loops

Widening and narrowing operators to go between them

narrow((a, b)) = (a, b)
wide((a, b)) = (a,b) If b — a < 1000 else (a,)

Relational conditions

What connects two variables?

Inequality analysis

Want to track which variable is biggest.

Ranges not enough: each variable independent

{ X : (—00,00) }
y =x -1
{ X : (—0,0), ¥ i (—00,00) }

Need relational conditions on multiple values:

Normal Relational
P,.(x)=x2>0 P_(x,y)=x<Yy

Inequality analysis

Need more care when handling statements:

{ x<y}
y = 1000000

{ 7?7?77 }

Also need more care when writing merge functions:

X<Yy,y<2zZ, X<2Z y<2z,2Z<WY<W

\4

y < z

Inequality analysis

Octagon domain: x, y, x + y, and x — y ranges

sanjeA A ajqissod Jo abuey

Inequality analysis

Octagon domain: x, y, x + y, and X — y ranges
Octagon union handles the four ranges independently

Whenx : (a,b) andy : (c,d), boundsonx £y

Inequality analysis

Octagon domain: x, y, x + y, and X — y ranges
Octagon union handles the four ranges independently

Transfer functions for addition, subtraction easy

Handles common idioms like ali + 1]

Refinement functions also simple
x<y—->x—-y<0

Using Octagons

Want to check array indices in bounds
Ranges on integer variables
Relations over integers and arrays
Same-length arrays
Right-hand exclusive indices
Special support for indexOf operator
Java-style negative indices for insertions

Solution: octagons on array lengths + integer variables

Other Relations

Map has key
Element In array

String matches regex

Lock guards reference

Next class:

Common Domains

To do:
Course feedback
Milestone |l

Common Domains

Lay out complete definition of a task-specific analysis

Conditions, merge, transfer functions, refinements

Interval domain for integer ranges

And how to deal with infinite-height lattices

Inequality domain for tracking integer order

And how to deal with relational lattices

» . .
» - .
. . ‘i
s »
‘a . o ; < oy 5
. . -
» % . ‘
» - H
. a ¥ . ¥
» i - .
» - » @
» . » .
» —~ e L »
s s . G
» ™ . .
.
» .. ” ‘. . » .
» »
»
» ~ ¢ . : -
.
. 4 y
»
. £ .
. r - » - » .
. - . . p »
- -
- 4 - . E
. N .

Next class:

Checker Framework

To do:
Course feedback
Milestone |l

