
Common Domains
Static Analysis section, Lecture 20

Pavel Panchekha
CS 6110, U of Utah
24 March 2020

Video Lecture

How to ask questions during video lectures:
Stay muted; hold space bar to temporarily unmute
Raise hand to ask a question; I’ll call on you
Technical support over chat with Manasij }Participants panel

Online lecture for the rest of the term
Lectures recorded, re-watch / stream on Youtube
Attendance cancelled: not taken, everyone marked present

Simplified conditions
Conditions: which variables known to be non-negative

Need to know: which expressions produce non-negative results

(≥ 0) + (≥ 0) ⇝ (≥ 0) (≥ 0) × (≥ 0) ⇝ (≥ 0) (≥ 0) ÷ (≥ 0) ⇝ (≥ 0)

{ i ≥ 0 && j ≥ 0 }
m = (i + j) / 2
{ i ≥ 0 && j ≥ 0 && m ≥ 0 }

Simple rules instead of solver queries: fast

l[m] valid

Loops
If statements require “or” for simplified conditions

{ x ≥ 0 } while e { x *= -1; } { ??? }

x ???∨
x ???

x ≥ 0

Repeat loop analysis until result stops changing

x ???∨
x ???

Example
OR operation produces a graph structure

A → B when (A OR B) = B; structure called a lattice

!+ !- !0

?

+ 0 -

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Abstract
Interpretation

Common
Domains

Checker
Framework

Abstract Interpretation Dependent Types

Common Domains
Lay out complete definition of a task-specific analysis

Conditions, merge, transfer functions, refinements

Interval domain for integer ranges
And how to deal with infinite-height lattices

Inequality domain for tracking integer order
And how to deal with relational lattices

Refinements
Handling conditionals in an analysis

What’s in an Analysis?
Ingredients you need to define a task-specific analysis:

A set of conditions for variables and states—

A merge function for conditions—

Transfer functions for some functions—

Constants,
, …f(x, y)

Each condition corresponds to a property c Pc(x)

If , then c = merge(c1, c2) ∀x, Pc1
(x) ∨ Pc2

(x) → Pc(x)

If , then c = transf(c1) ∀x, Pc1
(x) → Pc(f(x))

Non-Negativity
A set of conditions for variables and states—

A merge function for conditions—

Transfer functions for some functions—

c = nn ∣ ?
Pnn(x) = x ≥ 0

P?(x) = ⊤

nn ?
nn nn ?
? ? ?

merge P?(x) ∨ Pnn(x) → P?(x)

…

nn ?
nn nn ?
? ? ?

+ P?(x) ∨ Pnn(y) → P?(x + y)

…

Applying the Analysis
These pieces let you analyze each function:

Initialize parameters to unknown condition-
At each step, over-approximate results-
Merge results of conditional expressions-
Repeat + merge until loops stabilize-

This leads to a fast, scalable analysis

Non-Negativity

lo = 0
hi = len(a)
while …:
m = (lo + hi) / 2
if …:
lo = m

else:
hi = m

Let’s apply this analysis step-by-step:
trans0() = nn a lo hi m

trans2() = nn

trans+(nn, nn) = nn
trans÷, (nn, nn) = nn

translen(?) = nn

Flow-sensitivity
Sometimes, if statements provide additional info:

if i >= 0:
return a[i]

else:
return a[len(a) + i]

 now known to be non-negativei

Add refinement functions for the analysis:
If , then (c′ 1, c′ 2) = refiR(c1, c2)
∀x, ∀y, Pc1

(x) ∧ Pc2
(y) ∧ R(x, y) → Pc′ 1

(x) ∧ Pc′ 2
(y)

Flow-sensitivity
This requires refinement functions for the analysis:

If , then (c′ 1, c′ 2) = refiR(c1, c2)
∀x, ∀y, Pc1

(x) ∧ Pc2
(y) ∧ T(x, y) → Pc′ 1

(x) ∧ Pc′ 2
(y)

For comparisons in the non-negativity analysis:

nn ?
nn nn, nn nn, ?
? nn, nn ?, ?

≥ P?(x) ∧ Pnn(y) ∧ x ≥ y

…
→ Pnn(x) ∧ Pnn(y)

Usually add negations of comparisons as well

Flow-sensitivity
Sometimes, if statements provide additional info:

if i >= 0:
return a[i]

else:
return a[len(a) - i]

 trans0() = nn
refi≥(?, nn) = (nn, nn)

Add refinement functions for the analysis:
If , then (c′ 1, c′ 2) = refiR(c1, c2)
∀x, ∀y, Pc1

(x) ∧ Pc2
(y) ∧ T(x, y) → Pc′ 1

(x) ∧ Pc′ 2
(y)

i : nn

Infinite height lattices
Making sure loop analyses still terminate

Interval analysis

Merge function computes min and max:

Want to track valid ranges for integer variables:
Four kinds of ranges: , , , and (a, b) (−∞, b) (a, ∞) ?

P(a,b)(x) = a ≤ x ≤ b

P(−∞,b)(x) = x ≤ b

P(a,∞)(x) = a ≤ x

P?(x) = ⊤

merge((a, b), (c, d)) = (min(a, c), max(b, d))

Interval analysis

Transfer functions for constants, addition, negation:

trans+((a, b), (c, d)) = (min(a, c), max(b, d))

trans−((a, b)) = (−b, −a)

transi () = (i, i)

Refinement functions for comparison:
refi≤((a, b), (c, d)) = (a, min(b, d)), (max(a, c), d)

Example

output = [“0”, “2^x”, “???”]

i = popcount(x)

if i >= len(output):

i = len(output) - 1

return output[i]

i len(output)Let’s apply this analysis step-by-step:

Infinite Height

(0,0)

(0,4)

(0,3)

(0,2)

(0,1)

… Lattice of intervals has infinitely-long paths
Creates a problem for analyzing loops

i = 0; while … { i++ }

(0, 0) (1, 1)∨
(0, 1) (1, 2)∨
(0, 2) (1, 3)∨

…

Infinite Height
One idea: ban ranges that are too wide

Range only valid when (a, b) b − a < 1000

i = 0; while … { i++ }

(0, 0) (1, 1)∨
(0, 1) (1, 2)∨

…

(0, 999) (1, 1000)∨
(0,)∞ (0,)∞

Lose information
outside of loops

Infinite Height
One idea: ban ranges that are too wide

Range only valid when (a, b) b − a < 1000

Only inside loops!

Wide lattice for loops, narrow lattice outside loops
Widening and narrowing operators to go between them

wide((a, b)) = (a, b) if b − a < 1000 else (a, ∞)

narrow((a, b)) = (a, b)

Relational conditions
What connects two variables?

Inequality analysis

Need relational conditions on multiple values:

Want to track which variable is biggest.
Ranges not enough: each variable independent

{ x : }
y = x - 1
{ x : , y : }

(−∞, ∞)

(−∞, ∞) (−∞, ∞)

P<(x, y) = x < y
Relational

Pnn(x) = x ≥ 0
Normal

Inequality analysis

Also need more care when writing merge functions:

Need more care when handling statements:

{ x < y }
y = 1000000
{ ??? }

x < y, y < z, x < z y < z, z < w, y < w

y < z

∨

x

y

Inequality analysis
Octagon domain:

R
ange of possible

 values
yRange of valid

 values

x + y

, , , and rangesx y x + y x − y

Inequality analysis

Octagon domain: , , , and rangesx y x + y x − y
Octagon union handles the four ranges independently

x

y

When and , bounds on x : (a, b) y : (c, d) x ± y

Inequality analysis

Octagon domain: , , , and rangesx y x + y x − y
Octagon union handles the four ranges independently

Transfer functions for addition, subtraction easy
Handles common idioms like a[i + 1]

Refinement functions also simple
x ≤ y → x − y ≤ 0

Using Octagons
Want to check array indices in bounds

Ranges on integer variables
Relations over integers and arrays
Same-length arrays
Right-hand exclusive indices
Special support for indexOf operator
Java-style negative indices for insertions

Solution: octagons on array lengths + integer variables

Other Relations

Map has key
Element in array

String matches regex

Lock guards reference

To do:
Course feedback
Milestone II

Common Domains
Next class:

Common Domains
Lay out complete definition of a task-specific analysis

Conditions, merge, transfer functions, refinements

Interval domain for integer ranges
And how to deal with infinite-height lattices

Inequality domain for tracking integer order
And how to deal with relational lattices

Demo

For

To do:
Course feedback
Milestone II

Checker Framework
Next class:

