Boolean Logic

Specifications section, Logic topic, Lecture 2

Pavel Panchekha

CS 6110, U of Utah 9 January 2020

Software Verification

NO BUGS Bugs are bad-

Challenges

Writing a specification for quicksort

Reasoning about predicates like sorted

Combining facts about lists and predicates

Propagating facts through the program

Expanding the specification to make it provable

Verification is hard!

Recent Successes

Class Progress

Boolean logic

Language for stating **facts about booleans**

And/or/not, conjunctive form, universality

Proofs of boolean logic facts **by refutation** Compact evidence of truth/falsity

Algorithm to automatically find proofs

Efficient in simple cases, core of modern solvers

Boolean Specifications

Syntax, Semantics, and Transformations

Specifications

Today, simplest kind of value: booleans

Facts about Booleans

TrueFalseBothNeitherOne+Onex $\neg x$ $x \land y$ $\neg (x \lor y)$ $x \lor y$ $x \lor y$

If Iff Two of 3 Always Never ... $x \Rightarrow y \quad x \Leftrightarrow y \quad {}_{2}{x, y, z}_{2} \quad \top \quad \bot$

Facts about Booleans

That's what you can say; what does it mean?

Depends on the values of the variables

 $[v] = "v \text{ is True"} [x \land y] = both [x] and [y]$ $[\neg x] = not [x] [x \lor y] = either [x] or [y] or both$

Semantics

Conjunctive form $x \land \neg x = \bot \quad \neg \neg x = x \quad x \lor y = \neg (\neg x \land \neg y)$

Conjunctive form: and, then or, then not, then variables

$$(x \land y) \lor (a \land b) = (x \lor (a \land b)) \land (y \lor (a \land b))$$
$$= (x \lor a) \land (x \lor b) \land (y \lor a) \land (y \lor b)$$

Any boolean logic fact can be **put into conjunctive form** But can it be **done quickly**?

Conjunctive form $(x \land y) \lor (a \land b)$

Conjunctive form $(A) \lor (B)$ $A = x \land y$ $B = a \land b$

"Tseytin transformation" to conjunctive form Constant factor increase in expression size

What use is a Spec?

That's what you can **say**; what does it **mean?**

Depends on the values of the variables

We want to use the spec **before** running a program Variables **don't have values** yet!

Deduction and Proof

Satisfiability, Validity, and Resolution

What use is a Spec?

What evidence could one provide?

"Could $(x \land y) \lor (a \land b)$ be true?" Yes. "Try True for x and y, and False for a and b."

"Must $(x \land y) \lor (a \land b)$ be true?" No. "Try False for x and y, and False for a and b."

What use is a Spec?

What evidence could one provide?

"If (x ∧ y) ∨ (a ∧ b) is true, then must x ∨ ¬a be true?"
"If (x ∧ y) ∨ (a ∧ b) is true, then could x ∨ ¬a be false?"
"Could ((x ∧ y) ∨ (a ∧ b)) ∧ ¬(x ∨ ¬a) be true?" Yes.
"Try True for x and y, and False for a and b."

Evidence

"Must $(x \lor y) \land (\neg x \lor z) \land (\neg y \lor z) \land \neg z$ be false?" Yes. **A B C D**

X	У	Z	Α	В	С	D
т	т	т	Т	Т	т	
т	т		Т			т
т		т	Т	т	Т	
т			Т		Т	Т
	т	т	Т	Т	т	
	т		т	т		т
		т		т	Т	
				т	Т	Т

Evidence

If
$$(x \lor y)$$
 and $(\neg x \lor z)$ then $(y \lor z)$
$$\frac{x \lor y}{y \lor z}$$

Logical Resolution

Evidence

Logical Resolution

Logical resolution can **prove anything must be false**. Or **disprove anything could be true**, naturally...

Compact: resolution proof hard to find, easy to check

Proof by Resolution

Logical resolution can **prove falsehood**.

- 1. Put into conjunctive form
- Group "or" terms: with x and with $\neg x$
- 3. Resolve every pair of terms across groups
- 4. New, equivalent formula without xWe'll see "variable elimination" again in this class

Course Updates

Recitation, Textbook, Assignment

Textbook

The Calculus of Computation

Aaron R. Bradley Zohar Manna

Springer, 2007

Topic 1 readings from this book (today: <u>Chapter 1</u>)

Available electronically through SpringerLink

I prefer to read day after lecture, before assignment

That way you can skim if you already understand it

Assignment 1

Solving n-Queens using the miniSat solver

Given a board size, find all valid n-Queens solutions

Encode the problem to boolean logic

Transform the encoding into conjunctive form

Invoke the solver and parse the output

Repeat multiple times to find all solutions

Due 16 January, in a week (start now!) Demo, install help tomorrow at 13:00 in MEB 3485

Proof Search

Davis-Putnam-Logemann-Loveland

Proof by Resolution

Logical resolution can prove anything must be false.

- 1. Put into conjunctive form
- Group "or" terms: with x and with $\neg x$
- 3. Resolve every pair of terms across groups
- 4. New, equivalent formula without x

Rewrites one fact into another form

Proof by Resolution

Algorithm with **one variable**: fact being rewritten Like working in **assembly language**...

Let's re-imagine this algorithm

Result is known as **DPLL** "Davis-Putnam-Logemann-Loveland"

Let's re-imagine this algorithm

Special Cases

Logical resolution can prove anything must be false.

What if one group is empty?

2. Group "or" terms: with x and with $\neg x$

3 Then there's only x and no x ups 4 So x should be True 50 terms with x don't matter

Special Cases

Logical resolution can prove anything must be false.

1. Put into conjunctive form

2What if one term is a singleton?

3. Resolve every pair of terms across groups

4. NThenuxamustabe Truet x

Special Cases

Logical resolution can prove anything must be false.

1. Put into conjunctive form

20therwise, both terms are "or"s

3. Resolve every pair of terms across groups

4. Then result is also an "or"

DPLL algorithm

Proof by resolution, presented as a program

- 1. Put into conjunctive form
- 2. Check for **variables all alone**
- Check for variables with one polarity
- 4. Pick a variable and **try setting** to True
- 5. If it doesn't work, it **must be** False

Proof by Resolution

DPLL algorithm is still core of modern SAT solvers

Two additional improvements possible

Non-chronological backtracking

Conflict-driven clausal learning

One **knob to tune**: which variable to pick

Most common variable? Least common? Least controversial?

Next class: First-order Logic

To do:
Course feedback
Reading in textbook
Assignment 1

Boolean logic

Language for stating **facts about booleans**

And/or/not, conjunctive form, universality

Proofs of boolean logic facts **by refutation** Compact evidence of truth/falsity

Algorithm to automatically find proofs

Efficient in simple cases, core of modern solvers

TO INFINITY...

2 BOOLE/NS

∞ integration in the second second

NEU SYNTAX

FOR ALL

THERE EXISTS

THEORIES

$\begin{array}{c} \text{ONLY THE LIMITS} \\ \text{OF YOUR MIND} \end{array}$

MAKE IT INPOSSIBLE

Next class: First-order Logic

To do:
Course feedback
Reading in textbook
Assignment 1