
Boolean Logic
Specifications section, Logic topic, Lecture 2

Pavel Panchekha
CS 6110, U of Utah
9 January 2020

Software Verification

No Bugs
Bugs are bad

Challenges
Writing a specification for quicksort

Reasoning about predicates like sorted

Combining facts about lists and predicates

Propagating facts through the program

Expanding the specification to make it provable

Verification is hard!

Recent Successes

Memory Model

seL4

Quark IronClad

Class Progress
Logical

reasoning
Program

logics
Static

analysis

First-order Logic Decision Procedures

Boolean
logic Syntax Proof Algorithm

Boolean logic
Language for stating facts about booleans

And/or/not, conjunctive form, universality

Proofs of boolean logic facts by refutation
Compact evidence of truth/falsity

Algorithm to automatically find proofs
Efficient in simple cases, core of modern solvers

Boolean Specifications
Syntax, Semantics, and Transformations

Specifications
Generally describe facts about the program

Which may or may not, but should, be true

???

Phrased in terms of values that flow through program
Arguments, returns, variables, loop indices, system calls, …

Pre
condition

Post
condition Types Invariants Effects …

Today, simplest kind of value: booleans

Facts about Booleans

True False Both One+ OneNeither

If Iff Two of 3 Never …Always

x ¬x x ∧ y x ∨ y x ⊻ y¬(x ∨ y)

x ⇔ yx ⇒ y ⊤ ⊥2{x, y, z}2

x ¬x x ∧ y x ∨ y

Semantics

Syntax

Facts about Booleans
x ¬x x ∧ y x ∨ y∣ ∣ ∣x, y := v

Variable

That’s what you can say; what does it mean?
Depends on the values of the variables

[[v]] = "v is True"
[[¬x]] = not [[x]]

[[x ∧ y]] = both [[x]] and [[y]]

[[x ∨ y]] = either [[x]] or [[y]] or both

Conjunctive form
x ∨ y = ¬(¬x ∧ ¬y)¬¬x = xx ∧ ¬x = ⊥

Conjunctive form: and, then or, then not, then variables

(x ∧ y) ∨ (a ∧ b) = (x ∨ (a ∧ b)) ∧ (y ∨ (a ∧ b))
= (x ∨ a) ∧ (x ∨ b) ∧ (y ∨ a) ∧ (y ∨ b)

Any boolean logic fact can be put into conjunctive form
But can it be done quickly?

(x ∧ y) ∨ (a ∧ b)

() ∨ ()

Conjunctive form
x ∧ y a ∧ b(x ∧ y) ∨ (a ∧ b)

() ∨ ()

Conjunctive form

x ∧ y
a ∧ b

A =
B =

A B

() ∨ ()

Conjunctive form

(A ∧ x ∧ y) ∨ (¬A ∧ ¬(x ∧ y))
(B ∧ a ∧ b) ∨ (¬B ∧ ¬(a ∧ b))

A B
One per term

Each is small

“Tseytin transformation” to conjunctive form
Constant factor increase in expression size

:(

What use is a Spec?
That’s what you can say; what does it mean?

Depends on the values of the variables

We want to use the spec before running a program
Variables don’t have values yet!

“Could it be true?” “Must it be true?” “If this, then that?”

Satisfiability Validity Implication

Deduction and Proof
Satisfiability, Validity, and Resolution

What use is a Spec?
“Could it be true?” “Must it be true?” “If this, then that?”

Satisfiability Validity Implication

What evidence could one provide?

“Could be true?”(x ∧ y) ∨ (a ∧ b) Yes.
“Try True for and , and False for and .”x y a b

“Must be true?”(x ∧ y) ∨ (a ∧ b) No.
“Try False for and , and False for and .”x y a b

What use is a Spec?
“Could it be true?” “Must it be true?” “If this, then that?”

Satisfiability Validity Implication

What evidence could one provide?

“If is true, then must(x ∧ y) ∨ (a ∧ b) x ∨ ¬a be true?”

“Could ((x ∧ y) ∨ (a ∧ b)) ∧ ¬(x ∨ ¬a) be true?” Yes.
“Try True for and , and False for and .”x y a b

“If is true, then could(x ∧ y) ∨ (a ∧ b) x ∨ ¬a be false?”

Evidence
“Must be false?”(x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ z) ∧ ¬z Yes.

A B C D
x y z A B C D

T T T T T T

T T T T

T T T T T

T T T T

T T T T T

T T T T

T T T

T T T

Evidence
“Must be false?”(x ∨ y) ∧ (¬x ∨ z) ∧ (¬y ∨ z) ∧ ¬z Yes.

y ∨ z
z

⊥

Logical Resolution

If (x ∨ y) and (¬x ∨ z) then (y ∨ z)

x ∨ y
y ∨ z

¬x ∨ z

Evidence

Logical resolution can prove anything must be false.

Logical Resolution

If (x ∨ y) and (¬x ∨ z) then (y ∨ z)

x ∨ y
y ∨ z

¬x ∨ z

Or disprove anything could be true, naturally…

Compact: resolution proof hard to find, easy to check

Proof by Resolution
Logical resolution can prove falsehood.

Put into conjunctive form1.

Group “or” terms: with and withx ¬x2.

Resolve every pair of terms across groups3.

New, equivalent formula without x4.

We’ll see “variable elimination” again in this class

Course Updates
Recitation, Textbook, Assignment

Textbook

Topic 1 readings from this book (today: Chapter 1)
Available electronically through SpringerLink

I prefer to read day after lecture, before assignment

The Calculus of Computation

Aaron R. Bradley
Zohar Manna

Springer, 2007

That way you can skim if you already understand it

https://link.springer.com/content/pdf/10.1007%2F978-3-540-74113-8_1.pdf

Assignment 1
Solving n-Queens using the miniSat solver

Given a board size, find all valid n-Queens solutions

Encode the problem to boolean logic

Transform the encoding into conjunctive form

Invoke the solver and parse the output

Repeat multiple times to find all solutions

Due 16 January, in a week (start now!)
Demo, install help tomorrow at 13:00 in MEB 3485

Proof Search
Davis-Putnam-Logemann-Loveland

Proof by Resolution
Logical resolution can prove anything must be false.

Put into conjunctive form1.

Group “or” terms: with and withx ¬x2.

Resolve every pair of terms across groups3.

New, equivalent formula without x4.

Rewrites one fact into another form

Proof by Resolution
Algorithm with one variable: fact being rewritten

Like working in assembly language…

Let’s re-imagine this algorithm
Result is known as DPLL “Davis-Putnam-Logemann-Loveland”

Let’s re-imagine this algorithm

Logical resolution can prove anything must be false.

Put into conjunctive form1.

Group “or” terms: with and withx ¬x2.

Resolve every pair of terms across groups3.

New, equivalent formula without x4.

What if one group is empty?

Then there’s only and nox ¬x

So x should be True
So terms with x don’t matter

Special Cases

Logical resolution can prove anything must be false.

Put into conjunctive form1.

Group “or” terms: with and withx ¬x2.

Resolve every pair of terms across groups3.

New, equivalent formula without x4.

What if one term is a singleton?

Then must be Truex

Special Cases

Logical resolution can prove anything must be false.

Put into conjunctive form1.

Group “or” terms: with and withx ¬x2.

Resolve every pair of terms across groups3.

New, equivalent formula without x4.

Otherwise, both terms are “or”s

Then result is also an “or”

Special Cases

DPLL algorithm
Proof by resolution, presented as a program

Put into conjunctive form1.
Check for variables all alone2.
Check for variables with one polarity3.
Pick a variable and try setting to True4.
If it doesn’t work, it must be False5.

Proof by Resolution
DPLL algorithm is still core of modern SAT solvers

Two additional improvements possible
Non-chronological backtracking

Conflict-driven clausal learning

One knob to tune: which variable to pick
Most common variable? Least common? Least controversial?

To do:
Course feedback
Reading in textbook
Assignment 1

First-order Logic
Next class:

Boolean logic
Language for stating facts about booleans

And/or/not, conjunctive form, universality

Proofs of boolean logic facts by refutation
Compact evidence of truth/falsity

Algorithm to automatically find proofs
Efficient in simple cases, core of modern solvers

To InfinitY…

2 Booleans

∞ Integers

New Syntax

For all

There Exists

Theories

Make it
impossible

Only the limits
of your mind

To do:
Course feedback
Reading in textbook
Assignment 1

First-order Logic
Next class:

