
Abstract Interpretation
Static Analysis section, Lecture 19

Pavel Panchekha
CS 6110, U of Utah
19 March 2020

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Assignment 5 cancelled. Final presentation virtual.
Record final presentation; watch others’ videos

Online lecture for the rest of the term
Will try to continue as much as possible without change

Write and respond to written questions on presentation

Attendance cancelled: not taken, everyone marked present

Video Lecture
Download Zoom app, join this meeting at normal time:

Hold lectures, do exercises, Q&A as normal:

232-421-488
Stay muted; hold space bar to temporarily unmute
Raise hand to ask a question; I’ll call on you
Technical support over chat with Manasij }Participants panel

Lectures recorded, re-watch / stream on Youtube

Project
Due dates not changing, project still on

Milestone II in class; final presentation recorded-only
Prerecord as backup in case of connection issues
Live Q&A in class for the Milestone II presentations
Written Q&A for the final presentations (10% of grade)

Collaborate online for group projects
Schedule a 1 hour weekly meeting or more
“Pair programming” for presentations works well

Schedule

Some reorganization of the schedule expected
Since final project presentations online, extra time

Absences, extensions granted freely
Still expecting achievement of most or all project goals

Your health is more important than class
Please request absences, extensions in case of illness

Willing to do “incomplete”s for final projects, though

Child care, elderly care, and sick care all good reasons

A Note

Currently, voting to make grading pass/fail
May or may not pass; don’t get your hopes up

No one knows what is going on or how to respond
The administration is giving contradictory advice

I’ll do what I can to make things right
Please be flexible with me, but I’ll return the favor

New guidance comes out daily

Don’t expect much coordination from the U as a whole

Another Note

Happily, most essential content done
If you’ve learned how Dafny works and how to use it, I’m happy

My planning has been totally thrown off
Let’s salvage what we can out of the semester

Learned one method of verification top-to-bottom

Expect less prepared, less-polished lectures

Refresher
Long spring break, huh?

Verification
Consider verifying a binary search:

def bsearch(l, x):
i, j = 0, len(l) - 1
if j == -1 or x < l[i] or l[j] < x:

return -1
while j - i > 1:

m = (i + j) / 2
if l[m] < x: i = m
elif l[m] > x: j = m
else: return m

if l[i] == x: return i
elif l[j] == x: return j
else: return -1

{ sorted(l) }

{ l[return] == x or return == -1 }

What We Learned
Add pre-/post-conditions to specify behavior

If P true of a state , then Q true after, and s executed

{P} s {Q}

Each {P} s {Q} is a logical statement
Weakest preconditions systematically generate that statement

Verification
Consider verifying a binary search:

def bsearch(l, x):
i, j = 0, len(l) - 1
if j == -1 or x < l[i] or l[j] < x:

return -1
while j - i > 1:

m = (i + j) / 2
if l[m] < x: i = m
elif l[m] > x: j = m
else: return m

if l[i] == x: return i
elif l[j] == x: return j
else: return -1

{ sorted(l) }

{ l[return] == x or return == -1 }

{ 0 <= i <= j < len(l) }
{ l[i] <= x <= l[j] }
{ DECREASES j - I }

{ (l[i] == x and Q) or … }

Statement Types
Loops as a form of infinite statement

Invariants a short-hand for verifying that statement

Measures for proving a loop terminates

Functions for modular bits of code
Reusing function pre-/post-conditions at call sites

Measures for proving recursive functions terminate

Verification
Consider verifying a binary search:

def bsearch(l, x):
i, j = 0, len(l) - 1
if j == -1 or x < l[i] or l[j] < x:

return -1
while j - i > 1:

m = (i + j) / 2
if l[m] < x: i = m
elif l[m] > x: j = m
else: return m

if l[i] == x: return i
elif l[j] == x: return j
else: return -1

{ sorted(l) }

{ l[return] == x or return == -1 }

{ 0 <= i <= j < len(l) }
{ l[i] <= x <= l[j] }
{ DECREASES j - I }

{ (l[i] == x and Q) or … }

Verification
Reasoning about the verification condition

sorted(l) ->
(len(l) - 1 == -1 or l[0] > x or l[len(l) - 1] < x)
 and (-1 == -1 or l[-1] == x)) or
(not (len(l) - 1 == -1 or l[0] > x or l[len(l) - 1] < x)
 and (0 <= 0 < len(l) - 1 < len(l) and l[0] <= x <= l[len(l) - 1])
 and ((j - i > 1 and (0 <= i < j < len(l) and l[i] <= x <= l[j]) -> …)

Boolean structure uses DPLL(T) algorithm
Put into conjunctive form: AND of ORs

Guess boolean value, simplify and infer new ones

Result is a query containing true theory terms

Verification
Reasoning about the verification condition

sorted(l) ->
(len(l) - 1 == -1 or l[0] > x or l[len(l) - 1] < x)
 and (-1 == -1 or l[-1] == x)) or
(not (len(l) - 1 == -1 or l[0] > x or l[len(l) - 1] < x)
 and (0 <= 0 < len(l) - 1 < len(l) and l[0] <= x <= l[len(l) - 1])
 and ((j - i > 1 and (0 <= i < j < len(l) and l[i] <= x <= l[j]) -> …)

sorted(l) and ~X and ~Y and (X or ~A or ~B) and (~X or A) and …

sorted(l) and l[0] < x and 0 < len(l) and …

Verification
Reasoning about the query

sorted(l) and l[0] < x and 0 < len(l) and …

sorted(l) and l0 < x and l0 = l[0] and 0 < lenl and …

l0 < x and 0 < lenl and … sorted(l) and l0 = l[0] and …

Integers Arrays

Split the query into domain-specific queries

Verification
Reasoning about the domain-specific query

l0 < x and 0 < lenl and l0 >= x and …

Variable elimination for integer reasoning
Pick a variable to eliminatex
Group equations by on the left or rightx
Form all pairs of equations, eliminating x

l0 <= l0 - 1

Staying Safe
Don’t get Coronavirus

Avoiding Illness

Keep clean; wash hands, wear gloves
Virus spreads by contact (hand-shakes) or coughing
Wash hands for 20 seconds using soap

Keep a safe distance (6 feet) from other people
Stay away from crowds; work from home if possible
Shop, buy groceries less often (buy in bulk)
Avoid large social outings (including for your children)

Wear a mask or cover your coughs if you are sick

Symptoms

Severe cases (20%): emergency medical attention (911)
Difficulty breathing; bluish lips or face
Pain or pressure in the chest

Mild cases (80%) have the usual flu symptoms
Fever / high temperature
Coughing, usually a dry cough
Shortness of breath and general tiredness

Confusion and listlessness

Medical Care

Mild cases usually pass without issue
Drink lots of liquids, don’t skip meals, get rest
Track and record your temperature regularly

Call your doctor if you think you have it
You’ve recently travelled to Europe, China, Korea, or Iran
You’ve been in contact with someone sick
Call before getting care to protect others

Isolate yourself for 3 days after the fever passes

More Information

coronavirus.gov

http://coronavirus.gov

Scaling Up
What makes the process slow?

Abstract Interpretation
New goal of scalability for analyses

Approach: simple but specific over slow but general

Simple universe of predicates on program states
Loops analyzed by repeatedly re-analyzing

Lattice structure characterizes each analysis
Data structure for predicates, “or” method, finite height

Scalability
Process described so far can be very slow:

Weakest preconditions duplicate code: exponential in code
SAT solving is exponential in formula
Result is doubly-exponential!

Process described so far can be very general:
Limited only by solver capabilities
Can describe most correctness and performance specs
Writing specs is its own time-consuming task!

Alternative
Replace slow, general specs with fast, specialized ones

Array bounds Nullness

Format validation

String escaping

Invalid states

Non-negativity
Replace slow, general specs with fast, specialized ones

Array bounds

Index non-negative Index less than length

Non-negativity follows simple rules

Simplified conditions
Conditions: which variables known to be non-negative

Need to know: which expressions produce non-negative results

(≥ 0) + (≥ 0) ⇝ (≥ 0) (≥ 0) × (≥ 0) ⇝ (≥ 0) (≥ 0) ÷ (≥ 0) ⇝ (≥ 0)

{ i ≥ 0 && j ≥ 0 }
m = (i + j) / 2
{ i ≥ 0 && j ≥ 0 && m ≥ 0 }

Simple rules instead of solver queries: fast

l[m] valid

Propagating Conditions
Simplified conditions too general; over-approximate

Make sure rules for propagating are also over-approximate

{ P } skip { P }

{ P } s { Q } { Q } t { R } { P } s; t { R }∧ →

e ≥ 0 { P(x) } x := e { x ≥ 0 }→

Propagating Conditions
If statements require “or” for simplified conditions

if (e) { x := -1 } else { x := 1 } { ??? }

x ≥ 0x ??? ∨
x ???

The conditional could also be over-approximated
Called “flow-sensitive” analysis; ignored here

Loops
If statements require “or” for simplified conditions

{ x ≥ 0 } while e { x++; } { ??? }

x ≥ 0∨
x ≥ 0

x ≥ 0

Loops
If statements require “or” for simplified conditions

{ x ≥ 0 } while e { x *= -1; } { ??? }

x ???∨
x ???

x ≥ 0

Loops
If statements require “or” for simplified conditions

{ x ≥ 0 } while e { x *= -1; } { ??? }

x ???∨
x ???

x ≥ 0

Repeat loop analysis until result stops changing

x ???∨
x ???

Why it works
Each step over-approximates program state

If warning skipped, definitely no issue

However, some specifications cannot be stated
Specifically restricted set of conditions

Analysis of loops repeated until fix-point
Lattice must have finite height for analysis to terminate

Abstract Interpretation
A general approach to simplified conditionals

Generalizing
Create a simple universe of simplified conditions

Conditions for 1) values, and 2) program states

Non-negative Unknown
Over-approximating “or” operation on conditions

Also need a least-specific “unknown” state

Example
Track sign of values & variables

Positive
Zero
Negative
Non-positive
Non-negative
Non-zero
Unknown

OR + 0 - !+ !- !0 ?

+

0

-

!+

!-

!0

?

Example
Track sign of values & variables

Operation rules:
(+) + (+) = (+)
(+) + (0) = (+)
(+) + (-) = (?)
…

(+) * (+) = (+)
(-) * (-) = (+)
…

Constant rules:
0 is (0)
1, 2, … is (+)
-1, -2, … is (-)

Conditional rules:
(+) < x → x is (+)
(-) < (+) = True
…

Example
OR operation produces a graph structure

A → B when (A OR B) = B; structure called a lattice

!+ !- !0

?

+ 0 -

Exercise
Define an analysis for evenness/oddness of integers

Analysis
Represent predicates by a data structure

The “or” function is a method on the structure

Define rules for propagating predicates over statements
Also rules for assigning predicates to expressions

Finally, issue warnings on certain operations
Usually, check for certain predicates on function arguments

Analysis of loops requires repeating until fix-point

To do:
Course feedback
Work on project

Common Domains
Next class:

Abstract Interpretation
New goal of scalability for analyses

Approach: simple but specific over slow but general

Simple universe of predicates on program states
Loops analyzed by repeatedly re-analyzing

Lattice structure characterizes each analysis
Data structure for predicates, “or” method, finite height

Relations

Multiple

Variables

Intervals

Widening

Narrowing

Example

Array

Bounds

To do:
Course feedback
Work on project

Common Domains
Next class:

