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Hoare Triples
 

{P ∧ e} s {P’}  
{ P’} while e { s } {Q}

(P ∧ ¬e → Q) ∧
∧

 
{P ∧ e} s {P’}  

 
{P’ ∧ e} s {P’’}  

 
...

(P ∧ ¬e → Q) ∧
∧

(P′ ∧ ¬e → Q) ∧
∧

(P′ ′ ∧ ¬e → Q) ∧

Invent infinitely-many 
conditions  P(n)



Loop Invariants

Weakest precondition computed from invariant:

WP(Q) = I ∧ (I ∧ ¬e → Q) ∧ (I ∧ e → WP[s](I))

New syntax for writing loop invariants:

{P} while {I} e { s } {Q}

 
 

{I ∧ e} s {I}

P → I ∧
(I ∧ ¬e → Q) ∧



Bounding Iterations
Bound must decrease every iteration

Function that computes bound called the “measure” M

while e: 
{  } 
s 
{  }

I ∧ e

I

while e: 
{  } 
s 
{  }

M() = n

M() < n

Can assume  and  to prove measure decreasesI e



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

Expressions Statements

Loops Procedures



Procedures
Re-conceptualizing programs as collections of functions

Naming, linking, and the type environment

Reusing pre-/post-conditions for function calls
And ensuring that recursive functions terminate

Separation to allow modular function reasoning
You can’t change what you can’t touch



Procedures
Breakthroughs from the 1970s



Function Calls
What does this script return in m1 and m2?

l1 = range(-n, n) 
l2 = map(abs, l1) 
m1 = max(l1) 
m2 = max(l2)

[-n, -n+1, …, n-1]

But how are range, map, abs, and max implemented?



Functions
What are functions? Why do we use them?

Reuse common functionality-
Abstract over common code-
Reason modularly about code-
Isolate code from its surroundings-

Functions are present in every modern language



Body

Name Arguments

Output

Function Anatomy
A function definition has a couple of parts:

def f(x, y): 

s 

return e

A function is defined by them: < f, [x, y], s, e >

Link Assign

Run
Return



How Functions Work
Other statements call a function:

The interpreter links the function;

r = f(ex, ey)

 = ex;  = ey;x y

< f, [x, y], s, e >

then assigns the arguments;
then runs the body;

then saves the output.

;s r = e

Store map: names 
 to other data

A “different” x



Exercise
Rewrite to have no function calls:

def abs(x): 
if x > 0: 
return x 

else: 
return -x 

x = abs(y)



Verifying Procedures
Inverting preconditions and postconditions



Function Calls
Which of these pre-/post-conditions hold?

def abs(x): 
{  } 
if x > 0: 
return x 

else: 
return -x 

{  }

⊤

return ≥ 0

def max(l): 
{  } 
cur = l[0] 
for x in l[1:]: 
cur = max(cur, x) 

return cur 
{  }

len(l) > 0

∀i,return ≥ l[i]



Function Calls
Which of these pre-/post-conditions hold?

{  } abs(x) {  }⊤ return ≥ 0

{  } max(l) {  }len(l) > 0 ∀i,return ≥ l[i]

{  } 
l1 = range(-n, n) 
l2 = map(abs, l1) 
m1 = max(l1) 
m2 = max(l2) 
{  }

⊤

m2 ≥ 0 ∧ m1 ≥ n



Store P, Q in 
function data

Function Verification
Verifying functions requires additional syntax:

def f(x, y): 
{ P } 
s 
return e 
{ Q }

< f, [x, y], s, e, P, Q >

These pre/post-conditions are true when:

{  } s; return = e {  }P Q



Function Verification
Stored  and  are used to verify calls:P Q

< f, [x, y], s, e, P, Q >

Other calls can be rewritten into this form:

{  } 
r = f(ex, ey) 
{  }

P[x := ex, y := ey]

Q[return := r]

r = f(e1) + g(e2)
x = f(e1) 
y = g(e2) 
r = x + y

r = f(ex, ey) 



Weakest Precondition
Weakest preconditions work the same way:

Note that linking must precede verification

Given   
r = f(ex, ey)  

 

< f, [x, y], s, e, Pf , Qf >

WP[ ](Q) =
Pf[x := ex, y := ey] ∧

Qf[return := r] → Q

This make higher-order functions quite hard to verify



Example
{  } range(l, r) {  }⊤ len(return) = r − l

{  } max(l) {  }len(l) > 0 ∀i,return ≥ l[i]

l = range(-n, n); m = max(l) {  }m ≤ n

{  } range(l, r) {  }⊤ ∀i,return[i] = l + i

WP[t](m ≥ n) = len(l) > 0 ∧ (∀i, m ≥ l[i]) → (m ≤ n)
= len(l) > 0 ∧ ∃i, l[i] ≤ n

s t

WP[s](len(l) > 0) = ⊤ ∧ (len(l) = n − (−n) → len(l) > 0)
= 2n > 0

WP[s](∃i, l[i] ≤ n) = ⊤ ∧ (∀i, l[i] = − n + i) → (∃i, l[i] ≤ n)
= ∃i, i − n ≤ n



Exercise

{  } abs(x) {  }⊤ return ≥ 0 ∧ (return = x ∨ return = − x)
{  } max(l) {  }len(l) > 0 ∀i,return ≥ l[i]

m = max(l); a = abs(m) {  }a ≥ l[0]s t

Compute the weakest precondition:



Recursion
Recursive function calls work just like any other 

But, a recursive function may not terminate

def f(): 
{  } 
return f() 
{  }

⊤

⊥

For loops, we prove a decreasing measure
Same idea for functions; prove decreasing on recursive calls

def g(x): 
{ ; x decreases } 
if x > 0: 
return g(x - 1) 

{  }

⊤

⊤

Mutual recursion extra tricky!



Programs + Logic
The friends we made along the way



Class Progress
Logical 

reasoning
Program 

logics
Static 

analysis

Expressions Statements

Loops Procedures



What We Learned
How to evaluate expressions into logical formulas

Plus: path conditions, symbolic environments, and more

Extended symbolic environments to predicates

If P true of a state , then Q true after, and s executed

{P} s {Q}



Hoare Logic
Each {P} s {Q} is a logical statement

Weakest preconditions systematically generate that statement

Program verification via verification conditions
Convert each function to a logical statement
Solve verification conditions via a solver

Everything you need to build the Dafny language



Statement Types
Loops as a form of infinite statement

Invariants a short-hand for verifying that statement

Measures for proving a loop terminates

Functions for modular bits of code
Reusing function pre-/post-conditions at call sites

Measures for proving recursive functions terminate



The Frame Problem
Limiting access makes reasoning easier



Mutation
What is the value of a after execution?

def f(a): 

a[0] = 1 

a = [0] 
f(a)

How can we specify this behavior?

{  } 

{  } 

len(a) > 0

a[0] = 1

def f(a): 

a[0] = 1 

a = [0, 1] 
f(a)

{  } 

{  } 

len(a) > 0

a[0] = 1



Mutation
Specifications must describe before and after values:

The old syntax refers to the value before execution

def f(a): 

a[0] = 1 

a = [0, 1] 
f(a)

{  } 

{  } 

len(a) > 0

a[0] = 1 ∧ ∀i, i > 0 → a[i] = old(a)[i]

{  } 

{  } 

len(a) > 0

a[0] = 1



Framing
What is strongest post-condition after execution?

Applying a function can change its arguments

a = [0] 
b = [0] 
f(a)

a = [0] 
b = [0] 
g(a, b)

a = [0] 
b = a 
g(a, a)

{  } f(x) {  } 
{  } g(x, y) {  }

⊤ ⊤
⊤ ⊤

{  } f(x) {  }⊤ b = old(b) ?



Framing
Attempted fix to preserve facts about other variables:

Problem: what about relationships between variables?

“Frame” or context

{  } f(x) {  } 

{  } f(x) {  }

P(x) Q(x)

P(x) ∧ F(y) Q(x) ∧ F(y)

{  } 
f(a) 
{  }

a[0] = 0 ∧ a[0] < b[0]

a[0] = 1 ∧ a[0] < b[0]

{  } 
f(a) 
{  }

a[0] = 0

a[0] = 1



Separation
Want to separate variables into two groups:

Split clauses in precondition in the same way:

Written by the function W = {a}-

Only read or ignored R = {b}-

{  } f(x) {  }P(W ∪ R) * F(R) Q(W ∪ R) * F(R)

“Separating And”



Examples
Add syntax to describe read/written variables:

If mutable values are returned, need to track identity

a = [0] 
b = [0] 
f(a)

a = [0] 
b = [0] 
g(a, b)

a = [0] 
b = [0] 
g(a, a)

{  } f(x) {  } writes x 
{  } g(x, y) {  } writes x

⊤ ⊤
⊤ ⊤



To do: 
Course feedback 
Milestone I presentation 
Assignment 4

Milestone I
Next class:



Procedures
Re-conceptualizing programs as collections of functions

Naming, linking, and the type environment

Reusing pre-/post-conditions for function calls
And ensuring that recursive functions terminate

Separation to allow modular function reasoning
You can’t change what you can’t touch



Scaling

Solvers

Are slow



Abstract 
Interpretation

Propositions

As data



Dependent 
Types

Data As

Propositions



To do: 
Course feedback 
Milestone I presentation 
Assignment 4

Milestone I
Next class:


