Procedures

Programs section, Lecture 16

Pavel Panchekha

CS 6110, U of Utah 27 February 2020

Hoare Triples

 $(P \land \neg e \to Q) \land$ {P ∧ e} s {P'} ∧ { P'} while e { s } {Q} $(P \land \neg e \to Q) \land$ {P ∧ e} s {P'} ∧ $(P' \land \neg e \to Q) \land$ {P' ∧ e} s {P''} ∧ $(P'' \land \neg e \to Q) \land$

Invent infinitely-many conditions $P^{(n)}$

. . .

Loop Invariants

New syntax for writing loop invariants:

{P} while {I} e { s } {Q}

 $P \rightarrow I \land$ $(I \land \neg e \rightarrow Q) \land$ $\{\mathbf{I} \land \mathbf{e}\} \mathbf{s} \{\mathbf{I}\}\$

Weakest precondition computed from invariant:

 $WP(Q) = I \land (I \land \neg e \to Q) \land (I \land e \to WP[s](I))$

Bounding Iterations

Bound must **decrease** every iteration

Function that computes bound called the "measure" M

while e:	while e:
<i>{ I \lambda e }</i>	$\{ M() = n \}$
S	S
{ I }	$\{ M() < n \}$

Can assume I and e to prove measure decreases

Class Progress

Procedures

Re-conceptualizing programs as collections of functions

Naming, linking, and the type environment

Reusing pre-/post-conditions for function calls

And ensuring that recursive functions terminate

Separation to allow modular function reasoning

You can't change what you can't touch

Procedures

Breakthroughs from the 1970s

Function Calls

What does this script **return in m1 and m2**?

But how are range, map, abs, and max implemented?

Functions

What are functions? Why do we use them?

- **Reuse** common functionality
- **Abstract** over common code
- Reason **modularly** about code
- **Isolate** code from its surroundings

Functions are present in every modern language

Function Anatomy

A function definition has a couple of **parts**:

A function is **defined** by them: $\langle f, [x, y], s, e \rangle$

How Functions Work

The interpreter **links** the function; then **assigns** the arguments; then **runs** the body; then **saves** the output.

Exercise

Rewrite to have **no function calls**:

def abs(x):
 if x > 0:
 return x
 else:
 return -x

x = abs(y)

Verifying Procedures

Inverting preconditions and postconditions

Function Calls

Which of these pre-/post-conditions hold?

def max(l):
 { len(l) > 0 }
 cur = l[0]
 for x in l[1:]:
 cur = max(cur, x)
 return cur
 { ∀i, return ≥ l[i] }

Function Calls

Which of these pre-/post-conditions hold?

{ \top } abs(x) { return ≥ 0 }

{ len(l) > 0 } max(l) { $\forall i, return \ge l[i]$ }

{ T }
l1 = range(-n, n)
l2 = map(abs, l1)
m1 = max(l1)
m2 = max(l2)
{ $m_2 \ge 0 \land m_1 \ge n$ }

Function Verification

Verifying functions requires additional syntax:

These pre/post-conditions are true when:

{ P } s; return = e { Q }

Function Verification

Stored P and Q are used to **verify calls**:

Other calls can be **rewritten** into this form:

$$r = f(e1) + g(e2)$$

 $r = x + v$

Weakest Precondition

Weakest preconditions work the same way:

Given $\langle f, [x, y], s, e, P_f, Q_f \rangle$ $WP[\mathbf{r} = \mathbf{f}(\mathbf{ex}, \mathbf{ey})](Q) =$ $P_f[x := e_x, y := e_y] \wedge$ $Q_f[\mathbf{return} := r] \rightarrow Q$

Note that **linking** must precede verification This make **higher-order functions** quite hard to verify

Example

{ \top } range(l, r) { len(return) = r - l }

{ \top } range(l, r) { $\forall i$, return[i] = l + i }

{ len(l) > 0 } max(l) { $\forall i, return \ge l[i]$ }

$$\sum_{s} \frac{l = range(-n, n)}{t}; \frac{m = max(l)}{t} \left\{ \frac{m \leq n}{s} \right\}$$

$$WP[t](m \ge n) = \operatorname{len}(l) > 0 \land (\forall i, m \ge l[i]) \to (m \le n)$$
$$= \operatorname{len}(l) > 0 \land \exists i, l[i] \le n$$

 $WP[s](\operatorname{len}(l) > 0) = \top \wedge (\operatorname{len}(l) = n - (-n) \rightarrow \operatorname{len}(l) > 0)$ = 2n > 0

 $WP[s](\exists i, l[i] \le n) = \top \land (\forall i, l[i] = -n + i) \rightarrow (\exists i, l[i] \le n)$ $= \exists i, i - n \le n$

Exercise

Compute the **weakest precondition**:

{ \top } abs(x) { return $\ge 0 \land (return = x \lor return = -x) }$ ${ len(l) > 0 } max(l) { <math>\forall i, return \ge l[i] }$

 $\sum_{s} = \max(l); a = abs(m) \{ a \ge l[0] \}$

Recursion

Recursive function calls work **just like** any other But, a recursive function **may not terminate**

def f(): def g(x):
 { ⊤ }
 return f()
 { ⊥ }
 { ↓
 }
 def g(x):
 { ⊤; x decreases }
 if x > 0:
 return g(x - 1)
 { ⊤ }

For loops, we prove a **decreasing measure**

Same idea for functions; prove decreasing on recursive calls

Mutual recursion extra tricky!

Programs + Logic

The friends we made along the way

Class Progress

What We Learned

How to evaluate expressions into logical formulas

Plus: path conditions, symbolic environments, and more

Extended symbolic environments to predicates

If P true of a state, and s executed, then Q true after

{**P**} **S** {**Q**}

Hoare Logic

Each **{P} s {Q}** is a **logical statement**

Weakest preconditions systematically generate that statement

Program verification via verification conditions

Convert each function to a logical statement

Solve verification conditions via a solver

Everything you need to build the Dafny language

Statement Types

Loops as a form of **infinite statement**

Invariants a short-hand for verifying that statement

Measures for proving a loop terminates

Functions for **modular bits of code**

Reusing function pre-/post-conditions at call sites **Measures** for proving recursive functions terminate

The Frame Problem

Limiting access makes reasoning easier

Mutation

What is the value of a after execution?

def f(a): { len(a) > 0 } a[0] = 1 { a[0] = 1 } a = [0] f(a)
def f(a): { len(a) > 0 } a[0] = 1 { a[0] = 1 } a = [0, 1] f(a)

How can we **specify** this behavior?

Mutation

Specifications must describe **before and after** values:

```
def f(a):

{ len(a) > 0 }

a[0] = 1

{ a[0] = 1 \land \forall i, i > 0 \rightarrow a[i] = old(a)[i] 

a = [0, 1]

f(a)
```

The old syntax refers to the value before execution

Framing

What is **strongest post-condition** after execution?

 $\left\{ \begin{array}{c} \top \\ \top \end{array} \right\} f(x) \left\{ \begin{array}{c} \top \\ \end{array} \right\} \\ \left\{ \begin{array}{c} \top \end{array} \right\} g(x, y) \left\{ \begin{array}{c} \top \end{array} \right\} \\ a = [0] \\ b = [0] \\ b = [0] \\ f(a) \end{array} \right] a = [0] \\ b = [0] \\ g(a, b) \\ c = [0] \\$

Applying a function can change its arguments

{ T } f(x) { b = old(b) } ?

Framing

Attempted fix to preserve facts about other variables:

Problem: what about **relationships** between variables?

{
$$a[0] = 0$$
 }
f(a)
{ $a[0] = 1$ }
{ $a[0] = 0 \land a[0] < b[0]$ }
f(a)
{ $a[0] = 1 \land a[0] < b[0]$ }

Separation

Want to **separate** variables into two groups:

• Written by the function $W = \{a\}$

- **Only read** or ignored
$$R = \{b\}$$

Split clauses in precondition in the same way:

{
$$P(W \cup R) * F(R)$$
 } f(x) { $Q(W \cup R) * F(R)$ }
"Separating And"

Examples

Add syntax to describe **read/written** variables:

{ T } f(x) { T } writes x
{ T } g(x, y) { T } writes x
a = [0] a = [0] a = [0]
b = [0] b = [0] b = [0]
f(a) g(a, b) g(a, a)

If mutable values are **returned**, need to track identity

Next class: Milestone I

To do:
Course feedback
Milestone I presentation
Assignment 4

Procedures

Re-conceptualizing programs as collections of functions

Naming, linking, and the type environment

Reusing pre-/post-conditions for function calls

And ensuring that recursive functions terminate

Separation to allow modular function reasoning

You can't change what you can't touch

SCALING

ARE SLOU

ABSTRACT INTERPRETATION

PROPOSITIONS

$\Lambda = D \wedge T \wedge$

$D \land T \land \land \blacksquare$

PROPOSITIONS

Next class: Milestone I

To do:
Course feedback
Milestone I presentation
Assignment 4