
Loops
Programs section, Lecture 15

Pavel Panchekha
CS 6110, U of Utah
25 February 2020

{P} s {Q}

Hoare Logic
Behavior of a statement given by a triple:

If P true of a state , then Q true after, and s executed

P and Q are logical properties of the state and effects
Need not (but can) exactly represent the state

Conditionals
In what cases is {P} if (e) { s } else { t } {Q} true?

{P ∧ e} s {Q} {P ∧ ¬e} t {Q}∨

If e, same as {P} s {Q}-
If not e, same as {P} t {Q}-

Triples already include the “if precondition” idea:

Weakest Precondition

{P} x = e {Q} ↔ (P → Q[x := e])

Common pattern: something()P → Q

Weakest precondition of Q

{P} s {Q} ↔ (P → WP[s](Q))

x = eWP[](Q) = Q[x := e]

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Expressions Statements

Loops Procedures

Loops
What are the weakest preconditions of loops?

Imagining loops as infinitely-long sequences

Loop invariants for verification
What does not change over a loop iteration

Proving termination using decreasing measures
It can’t go below zero!

Verifying Loops
Loop invariants

Some loop examples
Which of these Hoare triples are true?

{ }
while (n > 0) { i++; n--; }
{ }

n = m ∧ i = 0

i = m

{ }
k = 0
while k < l:
k += 1
n *= 2

{ }

l ≥ 0 ∧ n = 1

n = 2l

{ }
while rand():
t = l
l = r
r = t

{ }

l < r

l < r

Only execute if trueConditional

What loops do
How do we describe the behavior of loops?

while e { s }

if (e) { s; while e { s } }

Recursive

We can think of while loops as infinite statements

if (e) { s; if (e) { s; if (e) { … } } }

Hoare Triples

Use loop unrolling to convert Hoare triples to logic:

while e { s } if (e) { s; while e { s } }=

{P} while e { s } {Q}

{P} if e { s; while e { s } } {Q}

{P ∧ e} s; while e { s } {Q}(P ∧ ¬e → Q) ∧

{P ∧ e} s {P’}
{ P’} while e { s } {Q}

(P ∧ ¬e → Q) ∧
∧

Hoare Triples

{P ∧ e} s {P’}
{ P’} while e { s } {Q}

(P ∧ ¬e → Q) ∧
∧

{P ∧ e} s {P’}

{P’ ∧ e} s {P’’}

...

(P ∧ ¬e → Q) ∧
∧

(P′ ∧ ¬e → Q) ∧
∧

(P′ ′ ∧ ¬e → Q) ∧

Invent infinitely-many
conditions P(n)

Loop Invariants

{P ∧ e} s {P’}

{P’ ∧ e} s {P’’}

...

(P ∧ ¬e → Q) ∧
∧

(P′ ∧ ¬e → Q) ∧
∧

(P′ ′ ∧ ¬e → Q) ∧

Invent infinitely-many
conditions P(n)

Simplest case: is some fixed condition P(n) I

{I ∧ e} s {I}

P = I ∧
(I ∧ ¬e → Q) ∧

{I ∧ e} s {I}

P → I ∧
(I ∧ ¬e → Q) ∧

Loop Invariants

Weakest precondition computed from invariant:

WP(Q) = I ∧ (I ∧ ¬e → Q) ∧ (I ∧ e → WP[s](I))

New syntax for writing loop invariants:

{P} while {I} e { s } {Q}

{I ∧ e} s {I}

P → I ∧
(I ∧ ¬e → Q) ∧

Demo

Count to n

Search an array

Binary search

Exercises
Write down loop invariants for the following loops:

{ }
while (n > 0) { i++; n--; }
{ }

n = m ∧ n ≥ 0 ∧ i = 0

i = m

{ }
k = 0
while k < l:
k += 1
n *= 2

{ }

l ≥ 0 ∧ n = 1

n = 2l

{ }
while rand():
t = l
l = r
r = t

{ }

l < r

l ≠ r

Invariant properties
If and are invariants, so is ; the reverse if false:I1 I2 I1 ∧ I2

{ }
n += m
m += n
{ }

0 < n ∧ 0 < m

0 < n ∧ 0 < m

You may need an that is stronger than I P
{ }
while (n > 0) { i++; n--; }
{ }

n = m ∧ n ≥ 0 ∧ i = 0

i = m

Course Updates
Milestone Presentations and Assignment 4

Assignment 4
Use Dafny to verify several sorting algorithms:

Bubble sort-
Insertion sort-
Merge sort-

Proofs due March 5; do not change the specification!

Check the textbook

Dafny available online but much faster if installed locally

Milestone I
Milestone presentations on March 3; time limit like proposal

What did you get done?-
What did you learn in the process?-
Where did you deviate from the plan?-

Switch who presents if proposal was solo

What is your plan for Milestone II?-

Termination
Go away, halting problem

{P} s {Q}

Must We Terminate?
Behavior of a statement given by a triple:

If P true of a state , then Q true after, and s executed

If s doesn’t terminate, do we treat Q as true or false?
Doesn’t matter: loops ought to terminate

Proving Termination

k = 0
while k < l:
k += 1
n *= 2

{ }
while m > 1:
if m % 2 == 0:
m = m / 2

else:
m = 2*m + 1

m ≥ 0{ }
while r - l > 1:
if f():
r = (r + l) // 2

else:
l = (r + l) // 2

l ≤ r

Which of the following loops terminate?

Termination
What does it mean that a loop terminates?

Loop must have a finite number of iterations

Idea: compute number of iterations for the loop
Problem: usually hard, requires inductive reasoning

Better idea: bound number of iterations for the loop
Usually easy by hand, often possible automatically

Bounding Iterations
Bound must decrease every iteration

Function that computes bound called the “measure” M

while e:
{ }
s
{ }

I ∧ e

I

while e:
{ }
s
{ }

M() = n

M() < n

Can assume and to prove measure decreasesI e

Higher Ordinals
Sometimes convenient to have non-integer measures

Key property: cannot decrease infinitely many times

while m > 0:
if n == 0:
m--
n = f(m)

else:
n--

Bound depends on “f”

(m, n) always decreases

Lexicographic order, tree depth very common

Measures Example
k = 0
while k < l:
k += 1
n *= 2 { }

while m > 0:
if n == 0:
m -= 1
n = m

else:
n -= 1

n ≥ 0

{ }
while r - l > 1:
if f():
r = (r + l) // 2

else:
l = (r + l) // 2

l ≤ r

k decreases

r - l decreases

(m, n) decreases

Exercises

{ m = 0 }
while n > 0:
n = n / 2
m++

{ stack : List<T> }
while stack:
print(f(stack.pop()))

Find loop measures for the following loops:

Exercises

{ binary_search_tree(node) }
while True:
if node.value == x:
return node

elif node.value < x:
node = node.right

else:
node = node.left

Find loop measures for the following loops:

Loop Verification
Verifying a loop requires two inputs:

Invariant I Measure M

With two constraints:
{I ∧ e} s {I}

{I ∧ e ∧ M = m } s { M < m }

Automatically discovering and is impossibleI M
It would solve the halting problem if it were possible!Though heuristics

work quite well

To do:
Course feedback
Milestone I presentation
Assignment 4

Procedures
Next class:

Loops
What are the weakest preconditions of loops?

Imagining loops as infinitely-long sequences

Loop invariants for verification
What does not change over a loop iteration

Proving termination using decreasing measures
It can’t go below zero!

Procedures

Reusing

P and Q

Recursion

Measures,

Again

Separation

Frame

Problem

To do:
Course feedback
Milestone I presentation
Assignment 4

Procedures
Next class:

