Hoare Logic

Behavior of a statement given by a triple:

\[\{P\} \; s \; \{Q\} \]

If \(P \) true of a state, and \(s \) executed, then \(Q \) true after

\(P \) and \(Q \) are logical properties of the state and effects

Need not (but can) exactly represent the state
Conditionals

In what cases is \{P\} if (e) \{ s \} else \{ t \} \{Q\} true?

- If e, same as \{P\} s \{Q\}
- If not e, same as \{P\} t \{Q\}

Triples already include the “if precondition” idea:

\{P \land e\} s \{Q\} \lor \{P \land \neg e\} t \{Q\}
Weakest Precondition

\[
\{P\} \ x = e \ \{Q\} \iff (P \rightarrow Q[x := e])
\]

\[
WP[x = e](Q) = Q[x := e]
\]

Common pattern: \(P \rightarrow \text{something}(Q) \)

Weakest precondition of \(Q \)

\[
\{P\} \ s \ \{Q\} \iff (P \rightarrow WP[s](Q))
\]
Class Progress

- Logical reasoning
- Program logics
- Static analysis

- Expressions
- Statements
- Loops
- Procedures
Loops

What are the **weakest preconditions of loops**?

- Imagining loops as infinitely-long sequences

Loop invariants for verification

- What does not change over a loop iteration

Proving termination using decreasing measures

- It can’t go below zero!
Verifying Loops

Loop invariants
Some loop examples

Which of these Hoare triples are true?

\[
\{ n = m \wedge i = 0 \} \\
\text{while } (n > 0) \{ i++; n--; \} \\
\{ i = m \} \\
\]

\[
\{ l \geq 0 \wedge n = 1 \} \\
k = 0 \\
\text{while } k < l: \\
k += 1 \\
n *= 2 \\
\{ n = 2^l \} \\
\]

\[
\{ l < r \} \\
\text{while } \text{rand}(): \\
t = l \\
l = r \\
r = t \\
\{ l < r \} \\
\]
What loops do

How do we describe the behavior of loops?

- **Conditional**: while \(e \) { \(s \) }
- **Only execute if true**: if \((e)\) { \(s \); while \(e \) { \(s \) } }
- **Recursive**: if \((e)\) { \(s \); if \((e)\) { \(s \); if \((e)\) { \(... \) } } }

We can think of while loops as **infinite statements**

\[
\text{if (e) \{ s; if (e) \{ s; if (e) \{ ... \} \} \}}
\]
Hoare Triples

while e { s } = if (e) { s; while e { s } }

Use loop unrolling to convert Hoare triples to logic:

\{P\} while e { s } \{Q\}

\{P\} if e { s; while e { s } } \{Q\}

\((P \land \neg e \rightarrow Q) \land \{P \land e\} s; \text{ while } e \{ s \} \{Q\}\)

\((P \land \neg e \rightarrow Q) \land \{P \land e\} s \{P'\} \land \{P'\} \text{ while } e \{ s \} \{Q\}\)
Hoare Triples

\[(P \land \neg e \rightarrow Q) \land
\{P \land e\} \text{ s } \{P'\} \land
\{P'\} \text{ while } e \{ s \} \{Q\}
\]

\[
(P \land \neg e \rightarrow Q) \land
\{P \land e\} \text{ s } \{P'\} \land
(P' \land \neg e \rightarrow Q) \land
\{P' \land e\} \text{ s } \{P''\} \land
(P'' \land \neg e \rightarrow Q) \land
\ldots
\]

Invent infinitely-many conditions \(P^{(n)}\)
Loop Invariants

\[(P \land \neg e \rightarrow Q) \land \{P \land e\} \Rightarrow \{P'\} \land (P' \land \neg e \rightarrow Q) \land \{P' \land e\} \Rightarrow \{P''\} \land (P'' \land \neg e \rightarrow Q) \land \ldots\]

Simplest case: \(P^{(n)}\) is some **fixed condition** \(I\)

\[P \Rightarrow II \land (I \land \neg e \rightarrow Q) \land \{I \land e\} \Rightarrow \{I\}\]
Loop Invariants

New syntax for writing loop invariants:

\[
\{P\} \text{ while } \{I\} \; e \; \{s\} \; \{Q\}
\]

\[
P \rightarrow I \land \\
(I \land \neg e \rightarrow Q) \land \\
\{I \land e\} \; s \; \{I\}
\]

Weakest precondition computed from invariant:

\[
WP(Q) = I \land (I \land \neg e \rightarrow Q) \land (I \land e \rightarrow WP[s](I))
\]
Demo

Count to \(n \)

Search an array

Binary search
Exercises

Write down **loop invariants** for the following loops:

```
{ n = m ∧ n ≥ 0 ∧ i = 0 } while (n > 0) { i++; n--; }
{ i = m }
```

```
{ l ≥ 0 ∧ n = 1 } k = 0 while k < l:
  k += 1
  n *= 2
{ n = 2^l }
```

```
{ l < r } while rand():
  t = l
  l = r
  r = t
{ l ≠ r }
```
Invariant properties

If I_1 and I_2 are invariants, so is $I_1 \land I_2$; the reverse if false:

\[
\begin{align*}
\{ & 0 < n \land 0 < m \} \\
n & += m \\
m & += n \\
\{ & 0 < n \land 0 < m \}
\end{align*}
\]

You may need an I that is stronger than P

\[
\begin{align*}
\{ & n = m \land n \geq 0 \land i = 0 \} \\
\text{while} \ (n > 0) & \{ \ i++; \ n--; \ } \\
\{ & i = m \}
\end{align*}
\]
Course Updates

Milestone Presentations and Assignment 4
Assignment 4

Use Dafny to verify several sorting algorithms:

- Bubble sort
- Insertion sort
- Merge sort

Proofs due March 5; do not change the specification!

Dafny available online but much faster if installed locally.
Milestone I

Milestone presentations on **March 3**; time limit like proposal

- What did you **get done**?
- What did you **learn in the process**?
- Where did you **deviate from the plan**?
- What is your **plan for Milestone II**?

Switch who presents if proposal was solo
Termination

Go away, halting problem
Must We Terminate?

Behavior of a statement given by a **triple**:

\[
\{P\} \ s \ \{Q\}
\]

If \(P \) true of a state, and \(s \) executed, then \(Q \) true after

If \(s \) doesn’t terminate, do we treat \(Q \) as true or false?

Doesn’t matter: **loops ought to terminate**
Proving Termination

Which of the following loops terminate?

\[
\begin{align*}
k &= 0 \\
\textbf{while} \ k < l: \\
&\quad k += 1 \\
&\quad n *= 2
\end{align*}
\]
\[
\{ \ l \leq r \ \} \\
\textbf{while} \ r - l > 1: \\
\quad \text{if} \ f(): \\
\quad \quad \ r = (r + l) \ \text{//} \ 2 \\
\quad \text{else:} \\
\quad \quad \ l = (r + l) \ \text{//} \ 2
\]
\[
\{ \ m \geq 0 \ \} \\
\textbf{while} \ m > 1: \\
\quad \text{if} \ m \ % \ 2 == 0: \\
\quad \quad \ m = m / 2 \\
\quad \text{else:} \\
\quad \quad \ m = 2*m + 1
\]
Termination

What does it mean that a loop terminates?
Loop must have a finite number of iterations

Idea: compute number of iterations for the loop
Problem: usually hard, requires inductive reasoning

Better idea: bound number of iterations for the loop
Usually easy by hand, often possible automatically
Bounding Iterations

Bound must **decrease** every iteration

Function that computes bound called the “measure” M

```
while e:
    \{ I \land e \}  while e:
    \{ M() = n \}

s   s
\{ I \} \{ M() < n \}
```

Can assume I and e to prove measure decreases
Higher Ordinals

Sometimes convenient to have non-integer measures

Lexicographic order, tree depth very common

\[
\text{while } m > 0: \\
\quad \text{if } n == 0: \\
\quad \quad m-- \\
\quad \quad n = f(m) \\
\quad \text{else:} \\
\quad \quad n--
\]

\((m, n)\) always decreases

Bound depends on “f”

Key property: cannot decrease infinitely many times
Measures Example

```python
k = 0
while k < l:
    k += 1
    n *= 2

{ l ≤ r }
while r - l > 1:
    if f():
        r = (r + l) // 2
    else:
        l = (r + l) // 2
```

```
{ n ≥ 0 }
while m > 0:
    if n == 0:
        m -= 1
        n = m
    else:
        n -= 1

(m, n) decreases
```

k decreases
r - l decreases
Exercises

Find loop measures for the following loops:

```python
{ m = 0 }
while n > 0:
    n = n / 2
    m++
```

```python
{ stack : List<T> }
while stack:
    print(f(stack.pop()))
```
Exercises

Find **loop measures** for the following loops:

```python
{ binary_search_tree(node) }
while True:
    if node.value == x:
        return node
    elif node.value < x:
        node = node.right
    else:
        node = node.left
```
Loop Verification

Verifying a loop requires **two inputs:**

Invariant I
Measure M

With two constraints:

$$\{I \land e\} \implies \{I\}$$
$$\{I \land e \land M = m\} \implies \{M < m\}$$

Automatically discovering I and M is **impossible**.

It would solve the halting problem if it were possible!

Though heuristics work quite well
Next class:

Procedures

To do:

- Course feedback
- Milestone I presentation
- Assignment 4
Loops

What are the **weakest preconditions of loops**?

Imagining loops as infinitely-long sequences

Loop invariants for verification

What does not change over a loop iteration

Proving termination using decreasing measures

It can’t go below zero!
PROCEDURES

REUSING

P AND Q
Recursion, Again

Measures,

Again
SEPARATION

FRAME

PROBLEM
Next class:

Procedures

To do:

- Course feedback
- Milestone I presentation
- Assignment 4