Loops

Programs section, Lecture 15

Pavel Panchekha

CS 6110, U of Utah
25 February 2020

Hoare Logic

Behavior of a statement given by a triple:
If P true of a state, and s executed, then Q true after

P and Q are logical properties of the state and effects

Need not (but can) exactly represent the state

Conditionals

In what cases is {P} if (e) { s } else { t } {Q} true?
- If e, same as {P} s {Q}

- If not e, same as {P} t {Q}

Triples already include the “if precondition” idea:

iP A e} s {0} v {P A —e} Tt {Q}

Weakest Precondition

{P} x = e {Q} <P 0Olxi=e]

WPIX = e](Q) = QO|x :=e]
Common pattern: P — something(Q)

Weakest precondition of 0

{P} s {Q} o« (P WPIsI(Q))

Class Progress
Logical

Program
reasoning logics

Static
analysis

Expressions Statements

Procedures

Loops

What are the weakest preconditions of loops”’

Imagining loops as infinitely-long sequences

Loop Invariants for verification

What does not change over a loop iteration

Proving termination using decreasing measures

It can’t go below zero!

Some loop examples

Which of these Hoare triples are true”

{ n=mAi=0 }
while (n > 0) { i++; n—; }

{i=m}
{ [>0An=1 } { I<r}
k = 0 while rand():
while k < 1: t =1
k += 1 1L=r
n k= 2 =t

Ir
{ n=2"}% {i<r}

What loops do

How do we describe the behavior of [oops?

Conditional _, + Only execute if true

while e { s }

l \Ijecursive

if (e) { s; while e { s } }

We can think of while loops as infinite statements

if (e) { s; 1f (e) { s; 1f (e) { .. } } }

Hoare TIriples

while e { s } = 1f (e) { s; while e { s } }
Use loop unrolling to convert Hoare triples to logic:
{P} while e { s } {0}
{P} 1if e { s; while e { s } } {0}
(PA—-e—- O)A{P n e} s; while e { s } {0}

(PA—-e— Q)A
{P A e} s {P'} A
{ P’} while e { s } {0Q}

Hoare TIriples

(PA—-e—= Q)A
{Prne}s {P'} A
{ P’} while e { s } {Q}

v
({I; /\;ee—}> QS) /E PR Invent infinitely-many
(P'A=e— Q) A
{P' ne} s {P''} A
(P"A-e— Q) A

conditions P

Loop Invariants

({I; A;ee_}) QS) /% PR Invent infinitely-many
(P'A=e— Q) A
{P' ne} s {P''} A
(P"A—e— Q)A

conditions P

Simplest case: P is some fixed condition /

P =1
(IAN—e— 0)A
{I A e} s {I}

Loop Invariants

New syntax for writing loop invariants:

{P} while {I} e { s } {0}

P—- 1IN
(IA-e— Q)A

{I A e} s {I}

Weakest precondition computed from invariant:

WPQ)=IANUAN—e—> O)ANUIANe— WP[s]())

Demo

Count to n
Search an array

Binary search

Exercises

Write down loop invariants for the following loops:

{ n=mAn>0Ai=0 }
while (n > 0) { i++; n——; }

{i=m}
{[/>0An=1 } { I<r }
k = 0 while rand():
while k < 1: t =1
k += 1 1 =r
n k= 2 =t

{ n=2"}% {l#r}

Invariant properties

If [; and I, are invariants, so is [; A I,; the reverse if false:

{ O<nAnO<m }
n += m
m += n
{ 0<nAO<m }

You may need an [that is stronger than P

{ n=mAn>0Ai=0 }
while (n > 0) { i++; n-—; }

{i=m}

Assignment 4

Use Dafny to verify several sorting algorithms:

- SBubble sort Check the textbook

- Insertion sort

- Merge sort

Proofs due March §; do not change the specification!

Dafny available online but much faster if installed locally

Milestone |

Milestone presentations on March 3; time Iimit like proposal

- What did you get done”
- What did you learn in the process”
- Where did you deviate from the plan”

- What is your plan for Milestone 117

Switch who presents if proposal was solo

Must We Terminate?

Behavior of a statement given by a triple:
If P true of a state, and s executed, then Q true after

If s doesn’t terminate, do we treat Q as true or false?

Doesn’t matter: loops ought to terminate

Proving Termination

Which of the following loops terminate”

k = 0
while k < 1:
k += 1
n = 2
{ I<r} { m>0 }
while r - 1 > 1: while m > 1:
1if f(): ifm% 2 == 0:
r=+(r +1) // 2 m=m/ 2
else: else:

1L=(r+1) // 2 m= 2xm + 1

Termination

What does it mean that a loop terminates”?

Loop must have a finite number of iterations

|dea: compute number of iterations for the loop

Problem: usually hard, requires inductive reasoning

Better idea: bound number of iterations for the loop

Usually easy by hand, often possible automatically

Bounding lterations

Bound must decrease every iteration

Function that computes bound called the “measure” M

while e: while e:
{ Ine } { MO=n }
S S
{17} { MO <n }

Can assume [and e to prove measure decreases

Higher Ordinals

Sometimes convenient to have non-integer measures
Lexicographic order, tree depth very common

if n == 0:

m__

n =
else:

Key property: cannot decrease infinitely many times

Measures Example

k decreases
k =0

thT.le k < 1: (m, n) decreases
k += 1

n x= 2 { n>0 }

while r - 1 > 1: m ~=
if f(): n —. m
r=(r+1) // 2 elﬂSE-_

else:
L=(r+1) // 2

Exercises

Find loop measures for the following loops:

{m
whil
n =
m++

()

0 }
n > 0:
h / 2

{ stack : List<T> }
while stack:
print(f(stack.pop()))

Exercises

Find loop measures for the following loops:

{ binary_search_tree(node) }
while True:
1f node.value == x:
return node
elif node.value < x:
node = node.right
else:
node = node. left

Loop Verification

Veritying a loop requires two inputs:

Invariant / Measure M

With two constraints:

{I A e} s {I}
{InenM=m}s{M<nm}

Automatically discovering I and M is impossible

It would solve Ralell e s R IR ore possiblel

work quite well

Next class:

Procedures

To do:

Course feedback
Milestone | presentation
Assignment 4

Loops

What are the weakest preconditions of loops”’

Imagining loops as infinitely-long sequences

Loop Invariants for verification

What does not change over a loop iteration

Proving termination using decreasing measures

It can’t go below zero!

R e IR

R=USING

P AN O

R==CCURSION

MEASURES,

ANV AN [aN

S=rNARANATION

R/ \ M=

PR3l =M

Next class:

Procedures

To do:

Course feedback
Milestone | presentation
Assignment 4

