
Hoare Logic
Programs section, Lecture 14

Pavel Panchekha
CS 6110, U of Utah
20 February 2020

// Returns a z3 formula

Symbolic Evaluation
Program expression Logical formula

Convert program expressions to equivalent formulas
Program variables become logical variables

def sym_eval(expr):
match expr:
Add(expr1, expr2):
return z3.Add(sym_eval(expr1), …)

...

Path Conditions

if (x < y):

z = x

if (y < x):

z = y

x < y

y < xy < x

⊤

z : x z : x

Impossible

z : y

Generating Inputs
⊤Query: ∃x : ℤ, ∃y : ℤ, ¬(x < y) ∧ y < x

Solution: x = 1, y = 0

x < y

y < x

Path 2 done

Change path

Class Progress
Logical

reasoning
Program

logics
Static

analysis

Expressions Statements

Procedures Loops

Statements
How to statements modify the environment?

Pre- and post-conditions for statements

Generating weakest preconditions
Backwards reasoning about program behavior

Verification conditions for programs
Logical tests of program correctness

Hoare Logic
Pre- and post-conditions

Problems
What is missing from symbolic evaluation?

Effects Printing text, file writes, network calls

Unbounded Loops, data structures, recursion

Abstraction Less detailed formulas, what not how

Move beyond symbolic evaluation to address these

Solutions
What is missing from symbolic evaluation?

Effects

Unbounded

Abstraction

Printing text, file writes, network calls

Loops, data structures, recursion

Less detailed formulas, what not how

Move beyond symbolic evaluation to address these

Describe states, not computations

Describe before/after, not in-between

Describe properties, not values

{P} s {Q}
Statement

Pre-condition Post-condition

{P} s {Q}

Hoare Logic
Behavior of a statement given by a triple:

If P true of a state , then Q true after, and s executed

P and Q are logical properties of the state and effects
Need not (but can) exactly represent the state

Example
{ }
if (b < a) {
min = b;

} else {
min = a;

}
{ }

a ≤ 5 ∧ 1 ≤ b

min ≤ 5

}Computes the smaller of a and b

Which must be less than a

Which is less than 5

Exercise
Which of these triples is true?

{ } if (b < 0) { b = -b } { }⊤ b ≥ 0

{ } b = 4 { }⊥ b = − 3

{ } b *= b; c *= c { }b > c b > c

Statements
Let’s list some common statements across languages

pass s ; tx = e

if (e) {s} else {t}

while (e) {s}

f(e, e, ...)
Next two lectures

How does each statement’s pre-/post-conditions work?

Simple Statements
In what cases is {P} pass {Q} true?

{P} pass {Q} ↔ (P → Q)

In what cases is {P} s ; t {Q} true?

{P} s {T}
{T} t {Q}{P} s; t {Q} ↔ ∃T,

Conditionals
In what cases is {P} if (e) { s } else { t } {Q} true?

{P ∧ e} s {Q} {P ∧ ¬e} t {Q}∨

If e, same as {P} s {Q}-
If not e, same as {P} t {Q}-

Triples already include the “if precondition” idea:

Assignment
In what cases is {P} x = e {Q} true?

Anything true of x after must be true of e before!

P may or may not mention x and constrain prior value

{P} x = e {Q} ↔ (P → Q[x := e])

Course Updates
The mailbag and project management

The Mailbag
“How would you implement or use the concepts taught in class?”

“What programs are and are not easy to analyze?”

“I would like to get more applied experience.”

Assignments Applied lectures

Come do research!

Project Tips
Class project is a large, long-term project

Proposals under-estimate difficulty of verification steps

Schedule time for consistent progress-
Work on least clear parts first-
Get a working prototype early-

Goal is to find failure to give yourself time to think.

Weakest Preconditions
Reasoning about programs in reverse

Weakest Precondition

{P} x = e {Q} ↔ (P → Q[x := e])

Common pattern: something()P → Q

Weakest precondition of Q

{P} s {Q} ↔ (P → WP[s](Q))

x = eWP[](Q) = Q[x := e]

Weakest Precondition

x = eWP[](Q) = Q[x := e]

passWP[](Q) = Q

s; t s tWP[](Q) = WP[](WP[](Q))

if (e) { s } else { t }
s t

WP[](Q) =
(e → WP[](Q)) ∧ (¬e → WP[](Q))

Example

if (x < 0) {
y = -x;

} else {
y = x;

}

Code CodeWP[](y ≥ 0) =

y = -x(x < 0 → WP[](y ≥ 0))

y = x(¬(x < 0) → WP[](y ≥ 0))
∧

Q[y := − x] = − x ≥ 0

Q[y := x] = x ≥ 0

Example

if (x < 0) {
y = -x;

} else {
y = x;

}

Code CodeWP[](y ≥ 0) =

(x < 0 → − x ≥ 0)

(x ≥ 0 → x ≥ 0)
∧

⊤

⊤

⊤

Exercise

t = x
x = y
y = t

Code CodeWP[](y = 4) =

Exercise

if (k < l) {
k++;
n *= 2;

}

Code CodeWP[](n = 2k) =

Exercise

x = x ^ y
y = x ^ y
x = x ^ y

Code CodeWP[](x ≥ y) =

Simple Questions
Why compute weakest preconditions?

Compact description of effects of a statement

Why are they called “weakest” preconditions?
Because ; is weaker than P → WP[s](Q) WP[s](Q) P

Why not “strongest postconditions”?
Because assignments destroy information (old value)

Setup for Verification
Program is a sequence of statements

Give pre-/post-conditions as specification

{P} s {Q}
Compute verification condition P* = WP[s](Q)

Send to the solver; UNSAT means verifiedP ∧ ¬P*

What about functions? In a week…

To do:
Course feedback
Read Chapter 5
Assignment 3

Loops
Next class:

Statements
How to statements modify the environment?

Pre- and post-conditions for statements

Generating weakest preconditions
Backwards reasoning about program behavior

Verification conditions for programs
Logical tests of program correctness

Semantics

Infinite

Code

Invariants

Imply

Yourself

Termination

Halting

Ranking

To do:
Course feedback
Read Chapter 5
Assignment 3

Loops
Next class:

