
Web Pages
Specifications section, Lecture 10

Pavel Panchekha
CS 6110, U of Utah
6 February 2020

Solver
First-order
Logic Input

Unquantified
Input

Conjunctive
Form

Conjunction of
Literals

Per-Theory
Queries

Domain-specific
Reasoning

Quantifier elimination

Integer
n ∣ x

Arrays
F(i) → G(a[i])

Equality
x + y = y + x

Tseityn

DPLL(T)

Γ
Γ ∧ l

Γ ∧ ¬l
Solver

Nelson-Oppen
Γ

Γ1 Γ2E
Integer Array

Domain Reasoning
Equality

Integers

Arrays

+ ×

a 2

Term database
Equivalence classes

Model building

x + 2y ≤ z
z ≤ 2x − y

x + 2y ≤ 2x − y

Variable elimination
Complexity of integers

Matrix form

a[k := 2] = b

b[k] = 2
a =k b

Backward propagation
Translation to theory

Mutation graph

Logic topic of the course

Theory or Practice

4

5

6

7 Interest

Stoked to move onto more algorithmic related material.

Don't listen to theory haters. I wanna freebase the theory stuff.

4

5

6

7 Clarity

Web Page Reasoning
My Research on Web Page Accessibility

Text zoom: 100% Text zoom: 150%

Text Zoom

Text zoom: 100% Text zoom: 150%

Text-zoom Bug

Bank of America

Hidden text

FAFSA
Overlapping text

Walgreens

Hidden tabs

HealthCare.gov

Missing button

Layout Bugs are Endemic

12% of Americans have disabilities

Accommodation legally required (under ADA)

How We Find Layout Bugs

Manual review
of renderings

Manual selection
of configurations

Industry standard:
Manual Testing

Auto-comparison
of renderings

Random test array
of configurations

State of the Art:
Automated Tests

Formal specification
for valid renderings

Automated proof
for all configurations

My Work:
Verification

How It Works
Solve

Equations

Formalize

Accessibility

Web Page

Scale Up

Solve Scale Up

Web Page

Formalize

Accessibility

Equations

How It Works

Web Pages

HTML + CSS + JS

Attractive

Simple

Accessible

Easy to Use

Mobile Friendly

JS is “interaction” not behavior

Accessible

Size & position guidelines
• Text is at least 14px tall
• Lines are at most 80 chars
• Text doesn’t overlap

Functionality guidelines
• Text zoom up to 200%
• Scrolling in only one dimension

Screen-reader assistance
• Screen-reader text is offscreen
• Header hierarchy matches sizes

Accessibility Guidelines

Select page elements

Constrain geometry

Developed by
accessibility researchers

Text zoom up to 200%

DO NOT EDIT

All handled by VizAssert

Behavior

HealthCare.gov

Missing button

The search bar
and search button
must be inside
the toolbar
(for text zoom ≤ 2)

Text zoom up to 200%
Guideline

Accessibility Guidelines

with same functionality

The search bar
and search button
must be inside
the toolbar
(for text zoom ≤ 2)

Behavior

Formal Specifications

#header + div + div
geometry.within

CSS Selector

div[role=banner] [type]

HealthCare.gov

Missing button

Geometric primitive

CSS Selector

text.zoom ≤ 200%

Inequality

The search bar
and search button
must be inside
the toolbar
(for text zoom ≤ 2)

Formal Specifications
Behavior

all elements matching

are
the
when

Visual Logic

Only on desktop

Formalize

HealthCare.gov

Missing button

 ,
window.width ≥ 800

The search bar
and search button
must be inside
the toolbar
(for text zoom ≤ 2)

div[role=banner] [type]
geometry.within
#header + div + div

text.zoom ≤ 200%

Specification to Equations
all elements matching

are
the
when

Visual Logic

 ,
window.width ≥ 800

div[role=banner] [type]
geometry.within
#header + div + div

text.zoom ≤ 200%

Quantifiers

Booleans Linear Real Arithmetic+
Equality+ Domain concepts+

within(B, A) :=
B.left ≥ A.left ∧ ⋯

Sizes & positions

Solve Scale Up

Web Page

Formalize

Accessibility

Equations

How It Works

Solve Scale Up

Accessibility

Formalize

Web Page

Equations

How It Works

Configuration

Web Browser
Web Page
HTML + CSS

Size: 1920×1280
Text zoom: 1.5×

Browser
Size: ×
Text zoom: ×

Rendering

A B C

Configuration

Web Browser
Web Page
HTML + CSS

Size: 1920×1280
Text zoom: 1.5×

Browser
Size: ×
Text zoom: ×

Rendering

A B C

Modern Web Browsers:
Millions of lines of code

Decades of development

Dozens of developers
} Huge

Configuration

Web Browser
Web Page
HTML + CSS

Size: 1920×1280
Text zoom: 1.5×

Browser
Size: ×
Text zoom: ×

Rendering

A B C

Configuration

Web Page
HTML + CSS

Browser
Size: W × H
Text zoom: Z×

Symbolic

Size: ×
Text zoom: ×

Rendering

A B C

Web Browser

Configuration

Web Page
HTML + CSS

Browser
Size: W × H
Text zoom: Z×

Symbolic

Symbolic

Symbolic

Web BrowserSymbolic

Size: ×
Text zoom: ×

Rendering

Sizes & positions
depend on W, H, Z

A B C

Configuration

Web Page
HTML + CSS

Size: W × H
Text zoom: Z×

Symbolic

Web BrowserSymbolic

Size: ×
Text zoom: ×

Problem: write a symbolic web browser

! Encodings for visual properties

Scaling symbolic reasoning

Rendering

A B C
Browser

Text
wraps

around floats
on either side of it.

Encoding Visual Props

“Exclusion zone” data structure

Text
wraps

around floats
on either side of it.

Encoding Visual Props

ezone.place(size) → positionezone.add(size, position)

Stairsteps down

Stairsteps up

Encoding Visual Props
y0

y1

y2

y3

l1

l2

r1

r2

r3

y0

y1

y2

y3

l1

l2

r1

r2

r3

ezone.place(size) → positionezone.add(size, position)

Encoding Visual Props

y0 y1 l1 r1(, ,) y2 l2 r2(, ,) y3 r3(, ⊥,)

O(n) equationsO(n) equations

y0

y1

y2

y3

l1

l2

r1

r2

r3

ezone.place(size) → positionezone.add(size, position)
ezone =

Compute
place calls
in one pass

Evaluate: Differential testing vs browsers

Validating the Formalization

Pass thousands of conformance tests

Found bugs in existing browsers
[OOPSLA’16]

Standard Tests Browsers
Non-automated

Solve Scale Up

Accessibility

Formalize

Web Page

Equations

Formalizing visual
properties

How It Works

Formalize Scale Up

Accessibility

Web Page

Formalizing visual
properties

Solve

Equations

How It Works

Solver

Solving the Equations

Equations QFLRA

Proof of
layout

Counter
example

Quantifier Free

Linear

Real Arithmetic No rounding error

No nested loops

No multiplication

Solving the Equations

Equations

Proof of
layout

Counter
example

Quantifier Free

Linear

Real Arithmetic

No nested loops

No multiplication

No rounding error

Simulated Rounding Error

a = b -ε < a - b < ε

QFLRA

Solving the Equations

Equations

Proof of
layout

Counter
example

Quantifier Free

Linear

Real Arithmetic

No nested loops

No multiplication

No rounding error

Simplifying Multiplication

a × b
2 × b
3 × b{ if a = 3

if a = 2
Value-set analysis: a ∈ { 2, 3 }

QFLRA

Solving the Equations

Equations

Proof of
layout

Counter
example

Quantifier Free

Linear

Real Arithmetic

QFLRA

Bounded work per element
Only one loop: render each element

No nested loops

No multiplication

No rounding error

Solving the Equations

Equations

Proof of
layout

Counter
example

QFLRA

Problem: bounded work per element

! Incrementalization, fusion, and unrolling

Inspired by compiler optimizations

f g
Ascent

Baseline

Descent

Box

“The line box height is the distance between the
uppermost box top and the lowermost box bottom”

Computing Line Height

Incrementalization: update running maximum

Loop over
elements in line

Computing Margins

Computing Margins

“Adjoining vertical margins collapse;
two margins are adjoining if and only if …”

Fusion: interleave with outer render loop

Recurse to find
zero-height elts

Text
wraps

around floats
on either side of it.

Arbitrary-size
data structure

Computing Float Layout

Unroll up to k corners

Solving the Equations

Equations

?
Insufficient k

Increment k

Proof of
layout

Counter
example

QFLRA

Verifying Real Pages

Websites from design forum FreeWebsiteTemplates.com

62 web pages {476 sensible combinations

Only use formalized subset of CSS

From Apple, Google, DOJ accessibility guides

14 properties

Verified

Reproduced

Unreproduced

Timed out (30min)

Evaluate: verified majority of real-world inputs

[PLDI’18]

Found many real accessibility bugs

Few false positives and few timeouts

Verifying Real Pages
81%

14%

3%

2%

{

Formalize Scale Up

Accessibility

Web Page

Formalizing visual
properties

Solve

Equations

Overcoming solver
limitations

How It Works

SolveFormalize

Equations

Accessibility

Web Page

Formalizing visual
properties

Overcoming solver
limitations

Scale Up

How It Works

Scaling Verification

0s

30s

60s

90s

100 elts 200 elts 300 elts 400 elts

Formalization Solving

Equation
solving!

Scaling Verification
A B C

Problem: reason about large pages quickly

Problem: reason about large pages quickly

! Divide web page into small components

Combine components with rely/guarantee logic

A B CA B C

Scaling Verification

A B CA B C

Template

Component

Isolating Components

A B C

Component’s rendering
depends on template’s

?
Template

Component

Isolating Components

No module or function boundaries!

Template’s depends
on component’s

A B C

Component’s rendering
depends on template’s

*

Component

Isolating Components

Template layout: part of component configuration

Arbitrary template

A B C

Component’s rendering
depends on template’s

Precondition

Component

Template layout: part of component configuration

Isolating Components

Width available
Current font size
Floating elements

Rely / Guarantee

A B C

Component

Precondition ⇒ SpecificationPrecondition

Too abstract

- Callout?

- HC.gov example?

http://HC.gov

Precondition

Rely / Guarantee
Template

Component

Precondition ⇒ Specification

Precondition

Precondition ⇒ SpecificationPrecondition ⇒ Specification
&&

Rely / Guarantee

Preconditions checked purely logically
No rendering ⇒ fast

Specification

Improving Scale

Evaluate: broader class of verified pages
Scaled to 11× larger pages, to 1400× faster

Scaled to multiple pages on one site

Parallelism

+ +

Caching

$ $ $

Problem Size

[OOPSLA’19]

SolveFormalize

Equations

Accessibility

Web Page

Formalizing visual
properties

Overcoming solver
limitations

Scale Up

Finding modularity
for rely/guarantee

How It Works

SolveFormalize

Equations

Accessibility

Web Page

Scale Up

Formalizing visual
properties

Overcoming solver
limitations

Finding modularity
for rely/guarantee

How It Works

Where We’re Going
From Logic to Programs

Three Parts
Write a

specification

Propagate
into program

Scale to
systems

Program Reasoning
How to define / write a programming language

Syntax, two types of semantics, and interpretation

Symbolic execution of program expressions
Dealing with function calls, conditionals, and feasibility

Changes in state due to program statements
Hoare logic, invariants, and termination

To do:
Course feedback
Project Proposal

Symbolic Execution
Next class:

