
Software Verification
CS 6110, taught by Pavel Panchekha

Pavel Panchekha
T/R 14:00-15:30
WEB L126

Software Verification

No Bugs
Bugs are bad

Bugs are bad
Software bugs are dangerous and costly

$59,000,000,000 annual cost (NIST estimate)

In 2002!

Security bugs, down-time, crashes, lost productivity

Bugs are bad

Therac 25

Radiation therapy software
Atomic Energy of Canada
Race condition kills 5

ION Therapy Planning

Dosage calculation for radio-therapy
Panamanian health organization
8 killed, 20 injured, FDA investigation

Ariane 5

Ariane 4 rocket controller reused
Faster rocket causes integer overflow
Flight computer crashes 40 seconds in

2003 BMW Crash

Thai Finance Minister trapped in car
Computer crashes, doors stuck
Firemen smashed windows

2005 Prius Recall

Cars stall, stop at highway speeds
Software bug causes computer crash
75,000 cars recalled

What is a Bug?
Feature request

Segmentation fault

Confusing features

Ugly, unintuitive

Confusing error messages

Unhandled exceptions

Unusably slow, memory hog

What is a Bug?
Feature request

Segmentation fault

Confusing features

Ugly, unintuitive

Confusing error messages for crashes

Unhandled exceptions

Unusable slow, memory hog
Specification
A bug is a mismatch between

code and its specification

Specifications
Exact description of what a program should do

What it does, not how it does it

// Spec: sorted(output)

Intermediate specifications
What needs to be true of partition for quicksort to work?

quicksort(l)

Program Reasoning
Spec: what a program should do—what does it do?

Matching program execution to clauses in spec

quicksort(l)

Program reasoning is running the program “in your head”
You can run it backwards or forwards

// len(l) == 3 and ???

// len(l) == 3 and l[0] == 5

Scaling up
How do you choose which specs to prove?

quicksort(l)

Choose the specificity of your specification
Fine-grained or coarse-grained specifications can be best

sorted(output)
len(output) = len(l)

output[i] in l

O(n log n)int *const l

About this Course
Lectures, Assignments, Projects, Grading

Pavel Panchekha
PhD in 2019
U. of Washington

I work on the browser as a platform for
executing programs with PL techniques

Your Instructor

I’m new here!

Manasij Mukherjee
PhD student
Advisor: John Regehr

Works on compiler optimization using
program synthesis and static analysis.

Your TA

Three Parts
Write a

specification

Propagate
into program

Scale to
systems

Three Parts
Write a

specification
Logical

reasoning

Propagate
into program

Program
logics

Scale to
systems

Static
analysis

Six Topics
Logical

reasoning
Program

logics
Static

analysis

First-order logic

Deciding truth

Symbolic execution

Axiomatic reasoning

Abstract domains

Dependent types

Six Assignments
Logical

reasoning
Program

logics
Static

analysis

First-order logic

Deciding truth

Symbolic execution

Axiomatic reasoning

Abstract domains

Dependent types

N-Queens with miniSAT

Kenken with Z3

Bug-finding with KLEE

Verification with Dafny

Analysis with Checkers

Six Assignments
Logical

reasoning
Program

logics
Static

analysis

First-order logic

Deciding truth

Symbolic execution

Axiomatic reasoning

Abstract domains

Dependent types

N-Queens with miniSAT

Kenken with Z3

Bug-finding with KLEE

Verification with Dafny

Analysis with Checkers

Assignments every two weeksish

Due Thursdays at midnight
Late policy: 20 point deduction without 48hr notice

No assignment for dependent types because projects

Each assignment 10% of your final grade

Course Project
Verify something, build a verifier, contribute, etc…

Project is 40% of your final grade

Proposal Draft Early February

Proposal Presentation Mid-February

Milestone 1 Early March

Milestone 2 Late March

Final presentation Mid April

Question: Team projects? Alternative assignment?

Participation
10% of your final grade, half attendance half feedback

24hr notice for absence from class (email is fine)

Feedback form mandatory every class
Answers aren’t graded, I’ll pretend they’re anonymous
A few standard questions plus class polls

Web Pages

my.eng.utah.edu/~cs6110

pavpan@cs.utah.edu

manasij@cs.utah.edu

mailto:pavpan@cs.utah.edu
mailto:manasij@cs.utah.edu

How to Verify
From specification to verification

Quicksort

def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Quicksort
Post: sorted(output) sorted(l) := l[i] ≤ l[i+1]
def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Quicksort
Post: sorted(output)

← sorted(left2)

← sorted(right2)

?

def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Prove: left[i] < right[j]

Quicksort

def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Post: sorted(output)

← sorted(left2)

← sorted(right2)

← left[i] < right[j]

← sorted(left2 + right2)

Nope! Is left2[i] < right2[j],
or just left and right?

Quicksort

def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Post: sorted(output) and output[i] in l

← sorted(left2)

← sorted(right2)

← left[i] < right[j]

← sorted(left2 + right2)

Prove: left[i] in l and right[j] in l

Post: sorted(output)

Quicksort

def quicksort(l):

pivot = l[len(l)//2]

left, right = partition(l, pivot)

left2 = quicksort(left)

right2 = quicksort(right)

return left2 + right2

Post: sorted(output) and output[i] in l

← sorted(left2) and left2[i] in l

← sorted(right2) and …

left[i] < right[j] and

← left[i] in l and

right[j] in l

← sorted(left2 + right2) and …

The right specification?

← sorted(left2)

← sorted(right2)

← sorted(left2 + right2)

Quicksort

def quicksort(l):

return []

Post: sorted(output) and output[i] in lPost: sorted(output) and output[i] in l and l[i] in output

Nope!

Quicksort

def quicksort(l):

return [min(l)] + sort(l)

Post: sorted(output) and output[i] in lPost: sorted(output) and output[i] in l and l[i] in output
and len(l) = len(output)

Nope!

Quicksort

def quicksort(l):

if l == [1, 2, 3, 3, 4]:

return [1, 2, 3, 4, 4]

else:

return sort(l)

Post: sorted(output) and output[i] in lPost: sorted(output) and output[i] in l and l[i] in output
and len(l) = len(output)

Nope!

Post: sorted(output)

Quicksort

def quicksort(l):

if l == [1, 2, 3, 3, 4]:

return [1, 2, 3, 4, 4]

else:

return sort(l)

Post: sorted(output) and l.count(x) == output.count(x)

Is that finally enough?

Post: sorted(output)

Challenges
Writing a specification for quicksort

Reasoning about predicates like sorted

Combining facts about lists and predicates

Propagating facts through the program

Expanding the specification to make it provable

Verification is hard!

Recent Successes

Memory Model

seL4

Quark IronClad

SAGE
Static analysis based fuzzing for Windows applications

Hundreds of security issues identified
One in three bugs in Win7 WEX identified by SAGE

500+ years of machine time

Millions of dollars saved

SLAM
Verify drivers don’t crash Windows

… in some very key areas, for example, driver
verification we’re building tools that can do actual
proof about the software …

— Bill Gates, WinHec 2002 Keynote

Standard part of driver SDK
Prevented hundreds of blue screen bugs

IronFleet
Verified implementation of distributed system

Found bugs in standard algorithms

Provably resistant to hardware failure

Next class:

Boolean Logic

To do:
Course feedback
Register for Piazza
Find course webpage

