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Conditional probability and independence

Knowing that an event has occurred sometimes forces us to reassess the prob-
ability of another event; the new probability is the conditional probability. If
the conditional probability equals what the probability was before, the events
involved are called independent. Often, conditional probabilities and indepen-
dence are needed if we want to compute probabilities, and in many other
situations they simplify the work.

3.1 Conditional probability

In the previous chapter we encountered the events L, “born in a long month,”
and R, “born in a month with the letter r.” Their probabilities are easy to
compute: since L = {Jan, Mar, May, Jul, Aug, Oct, Dec} and R = {Jan, Feb,
Mar, Apr, Sep, Oct, Nov, Dec}, one finds

P(L) =
7
12

and P(R) =
8
12

.

Now suppose that it is known about the person we meet in the street that
he was born in a “long month,” and we wonder whether he was born in
a “month with the letter r.” The information given excludes five outcomes
of our sample space: it cannot be February, April, June, September, or
November. Seven possible outcomes are left, of which only four—those in
R ∩ L = {Jan, Mar, Oct, Dec}—are favorable, so we reassess the probability
as 4/7. We call this the conditional probability of R given L, and we write:

P(R |L) =
4
7
.

This is not the same as P(R ∩ L), which is 1/3. Also note that P(R |L) is the
proportion that P(R ∩ L) is of P(L).
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Quick exercise 3.1 Let N = Rc be the event “born in a month without r.”
What is the conditional probability P(N |L)?

Recalling the three envelopes on our doormat, consider the events “envelope 1
is the middle one” (call this event A) and “envelope 2 is the middle one” (B).
Then P(A) = P(213 or 312) = 1/3; by symmetry, the same is found for P(B).
We say that the envelopes are in order if their order is either 123 or 321.
Suppose we know that they are not in order, but otherwise we do not know
anything; what are the probabilities of A and B, given this information?
Let C be the event that the envelopes are not in order, so: C = {123, 321}c =
{132, 213, 231, 312}. We ask for the probabilities of A and B, given that C
occurs. Event C consists of four elements, two of which also belong to A:
A ∩ C = {213, 312}, so P(A |C) = 1/2. The probability of A ∩ C is half of
P(C). No element of C also belongs to B, so P(B |C) = 0.

Quick exercise 3.2 Calculate P(C |A) and P(Cc |A ∪ B).

In general, computing the probability of an event A, given that an event C
occurs, means finding which fraction of the probability of C is also in the
event A.

Definition. The conditional probability of A given C is given by:

P(A |C) =
P(A ∩ C)

P(C)
,

provided P(C) > 0.

Quick exercise 3.3 Show that P(A |C) + P(Ac |C) = 1.

This exercise shows that the rule P(Ac) = 1−P(A) also holds for conditional
probabilities. In fact, even more is true: if we have a fixed conditioning event C
and define Q(A) = P(A |C) for events A ⊂ Ω, then Q is a probability function
and hence satisfies all the rules as described in Chapter 2. The definition of
conditional probability agrees with our intuition and it also works in situations
where computing probabilities by counting outcomes does not.

A chemical reactor: residence times

Consider a continuously stirred reactor vessel where a chemical reaction takes
place. On one side fluid or gas flows in, mixes with whatever is already present
in the vessel, and eventually flows out on the other side. One characteristic
of each particular reaction setup is the so-called residence time distribution,
which tells us how long particles stay inside the vessel before moving on. We
consider a continuously stirred tank: the contents of the vessel are perfectly
mixed at all times.
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Let Rt denote the event “the particle has a residence time longer than t
seconds.” In Section 5.3 we will see how continuous stirring determines the
probabilities; here we just use that in a particular continuously stirred tank,
Rt has probability e−t. So:

P(R3) = e−3 = 0.04978 . . .

P(R4) = e−4 = 0.01831 . . . .

We can use the definition of conditional probability to find the probability
that a particle that has stayed more than 3 seconds will stay more than 4:

P(R4 |R3) =
P(R4 ∩ R3)

P(R3)
=

P(R4)
P(R3)

=
e−4

e−3
= e−1 = 0.36787 . . . .

Quick exercise 3.4 Calculate P(R3 |Rc
4).

For more details on the subject of residence time distributions see, for example,
the book on reaction engineering by Fogler ([11]).

3.2 The multiplication rule

From the definition of conditional probability we derive a useful rule by mul-
tiplying left and right by P(C).

The multiplication rule. For any events A and C:

P(A ∩ C) = P(A |C) · P(C) .

Computing the probability of A∩C can hence be decomposed into two parts,
computing P(C) and P(A |C) separately, which is often easier than computing
P(A ∩ C) directly.

The probability of no coincident birthdays

Suppose you meet two arbitrarily chosen people. What is the probability their
birthdays are different? Let B2 denote the event that this happens. Whatever
the birthday of the first person is, there is only one day the second person
cannot “pick” as birthday, so:

P(B2) = 1 − 1
365

.

When the same question is asked with three people, conditional probabilities
become helpful. The event B3 can be seen as the intersection of the event B2,
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“the first two have different birthdays,” with event A3 “the third person has
a birthday that does not coincide with that of one of the first two persons.”
Using the multiplication rule:

P(B3) = P(A3 ∩ B2) = P(A3 |B2)P(B2) .

The conditional probability P(A3 |B2) is the probability that, when two days
are already marked on the calendar, a day picked at random is not marked,
or

P(A3 |B2) = 1 − 2
365

,

and so

P(B3) = P(A3 |B2)P(B2) =
(

1 − 2
365

)
·
(

1 − 1
365

)
= 0.9918.

We are already halfway to solving the general question: in a group of n arbi-
trarily chosen people, what is the probability there are no coincident birth-
days? The event Bn of no coincident birthdays among the n persons is the
same as: “the birthdays of the first n − 1 persons are different” (the event
Bn−1) and “the birthday of the nth person does not coincide with a birthday
of any of the first n − 1 persons” (the event An), that is,

Bn = An ∩ Bn−1.

Applying the multiplication rule yields:

P(Bn) = P(An |Bn−1) · P(Bn−1) =
(

1 − n − 1
365

)
· P(Bn−1)

as person n should avoid n − 1 days. Applying the same step to P(Bn−1),
P(Bn−2), etc., we find:

P(Bn) =
(

1 − n − 1
365

)
· P(An−1 |Bn−2) · P(Bn−2)

=
(

1 − n − 1
365

)
·
(

1 − n − 2
365

)
· P(Bn−2)

...

=
(

1 − n − 1
365

)
· · ·
(

1 − 2
365

)
· P(B2)

=
(

1 − n − 1
365

)
· · ·
(

1 − 2
365

)
·
(

1 − 1
365

)
.

This can be used to compute the probability for arbitrary n. For example,
we find: P(B22) = 0.5243 and P(B23) = 0.4927. In Figure 3.1 the probability
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Fig. 3.1. The probability P(Bn) of no coincident birthdays for n = 1, . . . , 100.

P(Bn) is plotted for n = 1, . . . , 100, with dotted lines drawn at n = 23 and
at probability 0.5. It may be hard to believe, but with just 23 people the
probability of all birthdays being different is less than 50%!

Quick exercise 3.5 Compute the probability that three arbitrary people are
born in different months. Can you give the formula for n people?

It matters how one conditions

Conditioning can help to make computations easier, but it matters how it is
applied. To compute P(A ∩ C) we may condition on C to get

P(A ∩ C) = P(A |C) · P(C) ;

or we may condition on A and get

P(A ∩ C) = P(C |A) · P(A) .

Both ways are valid, but often one of P(A |C) and P(C |A) is easy and the
other is not. For example, in the birthday example one could have tried:

P(B3) = P(A3 ∩ B2) = P(B2 |A3)P(A3) ,

but just trying to understand the conditional probability P(B2 |A3) already
is confusing:

The probability that the first two persons’ birthdays differ given that
the third person’s birthday does not coincide with the birthday of one
of the first two . . . ?

Conditioning should lead to easier probabilities; if not, it is probably the
wrong approach.
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3.3 The law of total probability and Bayes’ rule

We will now discuss two important rules that help probability computations
by means of conditional probabilities. We introduce both of them in the next
example.

Testing for mad cow disease

In early 2001 the European Commission introduced massive testing of cattle
to determine infection with the transmissible form of Bovine Spongiform En-
cephalopathy (BSE) or “mad cow disease.” As no test is 100% accurate, most
tests have the problem of false positives and false negatives. A false positive
means that according to the test the cow is infected, but in actuality it is not.
A false negative means an infected cow is not detected by the test.
Imagine we test a cow. Let B denote the event “the cow has BSE” and T
the event “the test comes up positive” (this is test jargon for: according to
the test we should believe the cow is infected with BSE). One can “test the
test” by analyzing samples from cows that are known to be infected or known
to be healthy and so determine the effectiveness of the test. The European
Commission had this done for four tests in 1999 (see [19]) and for several
more later. The results for what the report calls Test A may be summarized
as follows: an infected cow has a 70% chance of testing positive, and a healthy
cow just 10%; in formulas:

P(T |B) = 0.70,

P(T |Bc) = 0.10.

Suppose we want to determine the probability P(T ) that an arbitrary cow
tests positive. The tested cow is either infected or it is not: event T occurs in
combination with B or with Bc (there are no other possibilities). In terms of
events

T = (T ∩ B) ∪ (T ∩ Bc),

so that
P(T ) = P(T ∩ B) + P(T ∩ Bc) ,

because T ∩B and T ∩Bc are disjoint. Next, apply the multiplication rule (in
such a way that the known conditional probabilities appear!):

P(T ∩ B) = P(T |B) · P(B)
P(T ∩ Bc) = P(T |Bc) · P(Bc)

(3.1)

so that
P(T ) = P(T |B) · P(B) + P(T |Bc) · P(Bc) . (3.2)

This is an application of the law of total probability: computing a probability
through conditioning on several disjoint events that make up the whole sample
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space (in this case two). Suppose1 P(B) = 0.02; then from the last equation
we conclude: P(T ) = 0.02 · 0.70 + (1 − 0.02) · 0.10 = 0.112.

Quick exercise 3.6 Calculate P(T ) when P(T |B) = 0.99 and P(T |Bc) =
0.05.

Following is a general statement of the law.

The law of total probability. Suppose C1, C2, . . . , Cm are
disjoint events such that C1 ∪C2 ∪ · · · ∪Cm = Ω. The probability of
an arbitrary event A can be expressed as:

P(A) = P(A |C1)P(C1) + P(A |C2)P(C2) + · · · + P(A |Cm)P(Cm) .

Figure 3.2 illustrates the law for m = 5. The event A is the disjoint union of
A∩Ci, for i = 1, . . . , 5, so P(A) = P(A ∩ C1)+ · · ·+P(A ∩ C5), and for each i
the multiplication rule states P(A ∩ Ci) = P(A |Ci) · P(Ci).
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Fig. 3.2. The law of total probability (illustration for m = 5).

In the BSE example, we have just two mutually exclusive events: substitute
m = 2, C1 = B, C2 = Bc, and A = T to obtain (3.2).
Another, perhaps more pertinent, question about the BSE test is the following:
suppose my cow tests positive; what is the probability it really has BSE?
Translated, this asks for the value of P(B |T ). The information we were given
is P(T |B), a conditional probability, but the wrong one. We would like to
switch T and B.
Start with the definition of conditional probability and then use equations
(3.1) and (3.2):
1 We choose this probability for the sake of the calculations that follow. The true

value is unknown and varies from country to country. The BSE risk for the Nether-
lands for 2003 was estimated to be P(B) ≈ 0.000013.
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P(B |T ) =
P(T ∩ B)

P(T )
=

P(T |B) · P(B)
P(T |B) · P(B) + P(T |Bc) · P(Bc)

.

So with P(B) = 0.02 we find

P(B |T ) =
0.70 · 0.02

0.70 · 0.02 + 0.10 · (1 − 0.02)
= 0.125,

and by a similar calculation: P(B |T c) = 0.0068. These probabilities reflect
that this Test A is not a very good test; a perfect test would result in
P(B |T ) = 1 and P(B |T c) = 0. In Exercise 3.4 we redo this calculation,
replacing P(B) = 0.02 with a more realistic number.
What we have just seen is known as Bayes’ rule, after the English clergyman
Thomas Bayes who derived this in the 18th century. The general statement
follows.

Bayes’ rule. Suppose the events C1, C2, . . . , Cm are disjoint and
C1 ∪C2 ∪ · · · ∪Cm = Ω. The conditional probability of Ci, given an
arbitrary event A, can be expressed as:

P(Ci |A) =
P(A |Ci) · P(Ci)

P(A |C1)P(C1) + P(A |C2)P(C2) + · · · + P(A |Cm)P(Cm)
.

This is the traditional form of Bayes’ formula. It follows from

P(Ci |A) =
P(A |Ci) · P(Ci)

P(A)
(3.3)

in combination with the law of total probability applied to P(A) in the de-
nominator. Purists would refer to (3.3) as Bayes’ rule, and perhaps they are
right.

Quick exercise 3.7 Calculate P(B |T ) and P(B |T c) if P(T |B) = 0.99 and
P(T |Bc) = 0.05.

3.4 Independence

Consider three probabilities from the previous section:

P(B) = 0.02,

P(B |T ) = 0.125,

P(B |T c) = 0.0068.

If we know nothing about a cow, we would say that there is a 2% chance it is
infected. However, if we know it tested positive, we can say there is a 12.5%
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chance the cow is infected. On the other hand, if it tested negative, there is
only a 0.68% chance. We see that the two events are related in some way: the
probability of B depends on whether T occurs.
Imagine the opposite: the test is useless. Whether the cow is infected is unre-
lated to the outcome of the test, and knowing the outcome of the test does not
change our probability of B: P(B |T ) = P(B). In this case we would call B
independent of T .

Definition. An event A is called independent of B if

P(A |B) = P(A) .

From this simple definition many statements can be derived. For example,
because P(Ac |B) = 1 − P(A |B) and 1 − P(A) = P(Ac), we conclude:

A independent of B ⇔ Ac independent of B. (3.4)

By application of the multiplication rule, if A is independent of B, then
P(A ∩ B) = P(A |B)P(B) = P(A) P(B). On the other hand, if P(A ∩ B) =
P(A) P(B), then P(A |B) = P(A) follows from the definition of independence.
This shows:

A independent of B ⇔ P(A ∩ B) = P(A) P(B) .

Finally, by definition of conditional probability, if A is independent of B, then

P(B |A) =
P(A ∩ B)

P(A)
=

P(A) · P(B)
P(A)

= P(B) ,

that is, B is independent of A. This works in reverse, too, so we have:

A independent of B ⇔ B independent of A. (3.5)

This statement says that in fact, independence is a mutual property. Therefore,
the expressions “A is independent of B” and “A and B are independent” are
used interchangeably. From the three ⇔-statements it follows that there are
in fact 12 ways to show that A and B are independent; and if they are, there
are 12 ways to use that.

Independence. To show that A and B are independent it suffices
to prove just one of the following:

P(A |B) = P(A) ,

P(B |A) = P(B) ,

P(A ∩ B) = P(A) P(B) ,

where A may be replaced by Ac and B replaced by Bc, or both. If
one of these statements holds, all of them are true. If two events are
not independent, they are called dependent.
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Recall the birthday events L “born in a long month” and R “born in a month
with the letter r.” Let H be the event “born in the first half of the year,”
so P(H) = 1/2. Also, P(H |R) = 1/2. So H and R are independent, and we
conclude, for example, P(Rc |Hc) = P(Rc) = 1 − 8/12 = 1/3.
We know that P(L ∩ H) = 1/4 and P(L) = 7/12. Checking 1/2×7/12 �= 1/4,
you conclude that L and H are dependent.

Quick exercise 3.8 Derive the statement “Rc is independent of Hc” from
“H is independent of R” using rules (3.4) and (3.5).

Since the words dependence and independence have several meanings, one
sometimes uses the terms stochastic or statistical dependence and indepen-
dence to avoid ambiguity.

Remark 3.1 (Physical and stochastic independence). Stochastic
dependence or independence can sometimes be established by inspecting
whether there is any physical dependence present. The following statements
may be made.
If events have to do with processes or experiments that have no physical con-
nection, they are always stochastically independent. If they are connected
to the same physical process, then, as a rule, they are stochastically de-
pendent, but stochastic independence is possible in exceptional cases. The
events H and R are an example.

Independence of two or more events

When more than two events are involved we need a more elaborate definition
of independence. The reason behind this is explained by an example following
the definition.

Independence of two or more events. Events A1, A2, . . . ,
Am are called independent if

P(A1 ∩ A2 ∩ · · · ∩ Am) = P(A1) P(A2) · · ·P(Am)

and this statement also holds when any number of the events A1,
. . . , Am are replaced by their complements throughout the formula.

You see that we need to check 2m equations to establish the independence of
m events. In fact, m + 1 of those equations are redundant, but we chose this
version of the definition because it is easier.
The reason we need to do so much more checking to establish independence
for multiple events is that there are subtle ways in which events may depend
on each other. Consider the question:

Is independence for three events A, B, and C the same as: A and B are
independent; B and C are independent; and A and C are independent?
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The answer is “No,” as the following example shows. Perform two independent
tosses of a coin. Let A be the event “heads on toss 1,” B the event “heads on
toss 2,” and C “the two tosses are equal.”
First, get the probabilities. Of course, P(A) = P(B) = 1/2, but also

P(C) = P(A ∩ B) + P(Ac ∩ Bc) =
1
4

+
1
4

=
1
2
.

What about independence? Events A and B are independent by assumption,
so check the independence of A and C. Given that the first toss is heads (A
occurs), C occurs if and only if the second toss is heads as well (B occurs), so

P(C |A) = P(B |A) = P(B) =
1
2

= P(C) .

By symmetry, also P(C |B) = P(C), so all pairs taken from A, B, C are
independent: the three are called pairwise independent. Checking the full con-
ditions for independence, we find, for example:

P(A ∩ B ∩ C) = P(A ∩ B) =
1
4
, whereas P(A) P(B) P(C) =

1
8
,

and

P(A ∩ B ∩ Cc) = P(∅) = 0, whereas P(A) P(B) P(Cc) =
1
8
.

The reason for this is clear: whether C occurs follows deterministically from
the outcomes of tosses 1 and 2.

3.5 Solutions to the quick exercises

3.1 N = {May, Jun, Jul, Aug}, L = {Jan, Mar, May, Jul, Aug, Oct, Dec},
and N ∩ L = {May, Jul, Aug}. Three out of seven outcomes of L belong to
N as well, so P(N |L) = 3/7.

3.2 The event A is contained in C. So when A occurs, C also occurs; therefore
P(C |A) = 1.
Since Cc = {123, 321} and A∪B = {123, 321, 312, 213}, one can see that two
of the four outcomes of A ∪ B belong to Cc as well, so P(Cc |A ∪ B) = 1/2.

3.3 Using the definition we find:

P(A |C) + P(Ac |C) =
P(A ∩ C)

P(C)
+

P(Ac ∩ C)
P(C)

= 1,

because C can be split into disjoint parts A ∩ C and Ac ∩ C and therefore

P(A ∩ C) + P(Ac ∩ C) = P(C) .
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3.4 This asks for the probability that the particle stays more than 3 seconds,
given that it does not stay longer than 4 seconds, so 4 or less. From the
definition:

P(R3 |Rc
4) =

P(R3 ∩ Rc
4)

P(Rc
4)

.

The event R3 ∩ Rc
4 describes: longer than 3 but not longer than 4 seconds.

Furthermore, R3 is the disjoint union of the events R3∩Rc
4 and R3∩R4 = R4,

so P(R3 ∩ Rc
4) = P(R3) − P(R4) = e−3 − e−4. Using the complement rule:

P(Rc
4) = 1 − P(R4) = 1 − e−4. Together:

P(R3 |Rc
4) =

e−3 − e−4

1 − e−4
=

0.0315
0.9817

= 0.0321.

3.5 Instead of a calendar of 365 days, we have one with just 12 months. Let
Cn be the event n arbitrary persons have different months of birth. Then

P(C3) =
(

1 − 2
12

)
·
(

1 − 1
12

)
=

55
72

= 0.7639

and it is no surprise that this is much smaller than P(B3). The general formula
is

P(Cn) =
(

1 − n − 1
12

)
· · ·
(

1 − 2
12

)
·
(

1 − 1
12

)
.

Note that it is correct even if n is 13 or more, in which case P(Cn) = 0.

3.6 Repeating the calculation we find:

P(T ∩ B) = 0.99 · 0.02 = 0.0198
P(T ∩ Bc) = 0.05 · 0.98 = 0.0490

so P(T ) = P(T ∩ B) + P(T ∩ Bc) = 0.0198 + 0.0490 = 0.0688.

3.7 In the solution to Quick exercise 3.5 we already found P(T ∩ B) = 0.0198
and P(T ) = 0.0688, so

P(B |T ) =
P(T ∩ B)

P(T )
=

0.0198
0.0688

= 0.2878.

Further, P(T c) = 1 − 0.0688 = 0.9312 and P(T c |B) = 1 − P(T |B) = 0.01.
So, P(B ∩ T c) = 0.01 · 0.02 = 0.0002 and

P(B |T c) =
0.0002
0.9312

= 0.00021.

3.8 It takes three steps of applying (3.4) and (3.5):

H independent of R ⇔ Hc independent of R by (3.4)
Hc independent of R ⇔ R independent of Hc by (3.5)
R independent of Hc ⇔ Rc independent of Hc by (3.4).
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3.6 Exercises

3.1 � Your lecturer wants to walk from A to B (see the map). To do so, he
first randomly selects one of the paths to C, D, or E. Next he selects randomly
one of the possible paths at that moment (so if he first selected the path to
E, he can either select the path to A or the path to F ), etc. What is the
probability that he will reach B after two selections?
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3.2 � A fair die is thrown twice. A is the event “sum of the throws equals 4,”
B is “at least one of the throws is a 3.”

a. Calculate P(A |B).
b. Are A and B independent events?

3.3 � We draw two cards from a regular deck of 52. Let S1 be the event “the
first one is a spade,” and S2 “the second one is a spade.”

a. Compute P(S1), P(S2 |S1), and P(S2 |Sc
1).

b. Compute P(S2) by conditioning on whether the first card is a spade.

3.4 � A Dutch cow is tested for BSE, using Test A as described in Section 3.3,
with P(T |B) = 0.70 and P(T |Bc) = 0.10. Assume that the BSE risk for the
Netherlands is the same as in 2003, when it was estimated to be P(B) =
1.3 · 10−5. Compute P(B |T ) and P(B |T c).

3.5 A ball is drawn at random from an urn containing one red and one white
ball. If the white ball is drawn, it is put back into the urn. If the red ball
is drawn, it is returned to the urn together with two more red balls. Then a
second draw is made. What is the probability a red ball was drawn on both
the first and the second draws?

3.6 We choose a month of the year, in such a manner that each month has
the same probability. Find out whether the following events are independent:

a. the events “outcome is an even numbered month” (i.e., February, April,
June, etc.) and “outcome is in the first half of the year.”

b. the events “outcome is an even numbered month” (i.e., February, April,
June, etc.) and “outcome is a summer month” (i.e., June, July, August).
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3.7 � Calculate

a. P(A ∪ B) if it is given that P(A) = 1/3 and P(B |Ac) = 1/4.
b. P(B) if it is given that P(A ∪ B) = 2/3 and P(Ac |Bc) = 1/2.

3.8 � Spaceman Spiff’s spacecraft has a warning light that is supposed to
switch on when the freem blasters are overheated. Let W be the event “the
warning light is switched on” and F “the freem blasters are overheated.”
Suppose the probability of freem blaster overheating P(F ) is 0.1, that the
light is switched on when they actually are overheated is 0.99, and that there
is a 2% chance that it comes on when nothing is wrong: P(W |F c) = 0.02.

a. Determine the probability that the warning light is switched on.
b. Determine the conditional probability that the freem blasters are over-

heated, given that the warning light is on.

3.9 � A certain grapefruit variety is grown in two regions in southern Spain.
Both areas get infested from time to time with parasites that damage the
crop. Let A be the event that region R1 is infested with parasites and B that
region R2 is infested. Suppose P(A) = 3/4, P(B) = 2/5 and P(A ∪B) = 4/5.
If the food inspection detects the parasite in a ship carrying grapefruits from
R1, what is the probability region R2 is infested as well?

3.10 A student takes a multiple-choice exam. Suppose for each question he
either knows the answer or gambles and chooses an option at random. Further
suppose that if he knows the answer, the probability of a correct answer is 1,
and if he gambles this probability is 1/4. To pass, students need to answer at
least 60% of the questions correctly. The student has “studied for a minimal
pass,” i.e., with probability 0.6 he knows the answer to a question. Given that
he answers a question correctly, what is the probability that he actually knows
the answer?

3.11 A breath analyzer, used by the police to test whether drivers exceed
the legal limit set for the blood alcohol percentage while driving, is known to
satisfy

P(A |B) = P(Ac |Bc) = p,

where A is the event “breath analyzer indicates that legal limit is exceeded”
and B “driver’s blood alcohol percentage exceeds legal limit.” On Saturday
night about 5% of the drivers are known to exceed the limit.

a. Describe in words the meaning of P(Bc |A).
b. Determine P(Bc |A) if p = 0.95.
c. How big should p be so that P(B |A) = 0.9?

3.12 The events A, B, and C satisfy: P(A |B ∩ C) = 1/4, P(B |C) = 1/3,
and P(C) = 1/2. Calculate P(Ac ∩ B ∩ C).
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3.13 In Exercise 2.12 we computed the probability of a “dream draw” in the
UEFA playoffs lottery by counting outcomes. Recall that there were ten teams
in the lottery, five considered “strong” and five considered “weak.” Introduce
events Di, “the ith pair drawn is a dream combination,” where a “dream
combination” is a pair of a strong team with a weak team, and i = 1, . . . , 5.

a. Compute P(D1).
b. Compute P(D2 |D1) and P(D1 ∩ D2).
c. Compute P(D3 |D1 ∩ D2) and P(D1 ∩ D2 ∩ D3).
d. Continue the procedure to obtain the probability of a “dream draw”:

P(D1 ∩ · · · ∩ D5).

3.14 Recall the Monty Hall problem from Section 1.3. Let R be the event
“the prize is behind the door you chose initially,” and W the event “you win
the prize by switching doors.”

a. Compute P(W |R) and P(W |Rc).
b. Compute P(W ) using the law of total probability.

3.15 Two independent events A and B are given, and P(B |A ∪ B) = 2/3,
P(A |B) = 1/2. What is P(B)?

3.16 You are diagnosed with an uncommon disease. You know that there
only is a 1% chance of getting it. Use the letter D for the event “you have the
disease” and T for “the test says so.” It is known that the test is imperfect:
P(T |D) = 0.98 and P(T c |Dc) = 0.95.

a. Given that you test positive, what is the probability that you really have
the disease?

b. You obtain a second opinion: an independent repetition of the test. You
test positive again. Given this, what is the probability that you really have
the disease?

3.17 You and I play a tennis match. It is deuce, which means if you win the
next two rallies, you win the game; if I win both rallies, I win the game; if
we each win one rally, it is deuce again. Suppose the outcome of a rally is
independent of other rallies, and you win a rally with probability p. Let W be
the event “you win the game,” G “the game ends after the next two rallies,”
and D “it becomes deuce again.”

a. Determine P(W |G).
b. Show that P(W ) = p2 + 2p(1 − p)P(W |D) and use P(W ) = P(W |D)

(why is this so?) to determine P(W ).
c. Explain why the answers are the same.
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3.18 Suppose A and B are events with 0 < P(A) < 1 and 0 < P(B) < 1.

a. If A and B are disjoint, can they be independent?
b. If A and B are independent, can they be disjoint?
c. If A ⊂ B, can A and B be independent?
d. If A and B are independent, can A and A ∪ B be independent?




