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The Poisson process

In many random phenomena we encounter, it is not just one or two random
variables that play a role but a whole collection. In that case one often speaks
of a random process. The Poisson process is a simple kind of random process,
which models the occurrence of random points in time or space. There are
numerous ways in which processes of random points arise: some examples are
presented in the first section. The Poisson process describes in a certain sense
the most random way to distribute points in time or space. This is made more
precise with the notions of homogeneity and independence.

12.1 Random points

Typical examples of the occurrence of random time points are: arrival times
of email messages at a server, the times at which asteroids hit the earth,
arrival times of radioactive particles at a Geiger counter, times at which your
computer crashes, the times at which electronic components fail, and arrival
times of people at a pump in an oasis.
Examples of the occurrence of random points in space are: the locations of
asteroid impacts with earth (2-dimensional), the locations of imperfections in a
material (3-dimensional), and the locations of trees in a forest (2-dimensional).
Some of these phenomena are better modeled by the Poisson process than
others. Loosely speaking, one might say that the Poisson process model often
applies in situations where there is a very large population, and each member
of the population has a very small probability to produce a point of the
process. This is, for instance, well fulfilled in the Geiger counter example
where, in a huge collection of atoms, just a few will emit a radioactive particle
(see [28]). A property of the Poisson process—as we will see shortly—is that
points may lie arbitrarily close together. Therefore the tree locations are not
so well modeled by the Poisson process.
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12.2 Taking a closer look at random arrivals

A well-known example that is usually modeled by the Poisson process is that
of calls arriving at a telephone exchange—the exchange is connected to a large
number of people who make phone calls now and then. This will be our leading
example in this section.
Telephone calls arrive at random times X1, X2, . . . at the telephone exchange
during a time interval [0, t].
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The two basic assumptions we make on these random arrivals are

1. (Homogeneity) The rate λ at which arrivals occur is constant over time:
in a subinterval of length u the expectation of the number of telephone
calls is λu.

2. (Independence) The numbers of arrivals in disjoint time intervals are in-
dependent random variables.

Homogeneity is also called weak stationarity. We denote the total number of
calls in an interval I by N(I), abbreviating N([0, t]) to Nt. Homogeneity then
implies that we require

E[Nt] = λt.

To get hold of the distribution of Nt we divide the interval [0, t] into n intervals
of length t/n. When n is large enough, every interval Ij,n = ((j − 1) t/n, j t/n]
will contain either 0 or 1 arrival: For such a large n (which also satisfies
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n > λt), let Rj be the number of arrivals in the time interval Ij,n. Since Rj is
0 or 1, Rj has a Ber(pj) distribution for some pj . Recall that for a Bernoulli
random variable E[Rj ] = 0 · (1 − pj) + 1 · pj = pj. By the homogeneity
assumption, for each j

pj = λ · length of Ij,n =
λt

n
.

Summing the number of calls in the intervals gives the total number of calls,
hence

Nt = R1 + R2 + · · · + Rn.
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By the independence assumption, the Rj are independent random variables,
therefore Nt has a Bin(n, p) distribution, with p = λt/n.

Remark 12.1 (About this approximation). The argument just given
seems pretty convincing, but actually Rj does not have a Bernoulli distri-
bution, whatever the value of n. A way to see this is the following. Every
interval Ij,n is a union of the two intervals I2j−1,2n and I2j,2n. Hence the
probability that Ij,n contains two calls is at least (λt/2n)2 = λ2t2/4n2,
which is larger than zero.
Note however, that the probability of having two arrivals is of smaller order
than the probability that Rj takes the value 1. If we add a third assumption,
namely that the probability of two or more calls arriving in an interval Ij,n

tends to zero faster than 1/n, then the conclusion below on the distribution
of Nt is valid.

We have found that (at least in first approximation)

P(Nt = k) =
(

n

k

)(
λt

n

)k (
1 − λt

n

)n−k

for k = 0, . . . , n.

In this analysis n is a rather artificial parameter, of which we only know that
it should not be “too small.” It therefore seems a good idea to get rid of n
by letting n go to infinity, hoping that the probability distribution of Nt will
settle down. Note that
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,

and from calculus we know that

lim
n→∞

(
1 − λt

n

)n

= e−λt.

Since certainly

lim
n→∞
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n

)−k

= 1,

we obtain, combining these three limits, that

lim
n→∞ P(Nt = k) = lim

n→∞
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Since

e−λt
∞∑

k=0

(λt)k

k!
= e−λteλt = 1,

we have indeed run into a probability distribution on the numbers 0, 1, 2, . . . .
Note that all these probabilities are determined by the single value λt. This
motivates the following definition.
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Definition. A discrete random variable X has a Poisson distribu-
tion with parameter µ, where µ > 0 if its probability mass function p
is given by

p(k) = P(X = k) =
µk

k!
e−µ for k = 0, 1, 2, . . . .

We denote this distribution by Pois(µ).

Figure 12.1 displays the graphs of the probability mass functions of the Poisson
distribution with µ = 0.9 (left) and the Poisson distribution with µ = 5
(right).
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Fig. 12.1. The probability mass functions of the Pois(0.9) and the Pois(5) distri-
butions.

Quick exercise 12.1 Consider the event “exactly one call arrives in the
interval [0, 2s].” The probability of this event is P(N2s = 1) = λ · 2s · e−λ·2s.
But note that this event is the same as “there is exactly one call in the interval
[0, s) and no calls in the interval [s, 2s], or no calls in [0, s) and exactly one call
in [s, 2s].” Verify (using assumptions 1 and 2) that you get the same answer
if you compute the probability of the event in this way.

We do have a hint1 about what the expectation and variance of a Poisson
random variable might be: since E[Nt] = λt for all n, we anticipate that the
limiting Poisson distribution will have expectation λt. Similarly, since Nt has
a Bin(n, λt

n ) distribution, we anticipate that the variance will be

1 This is really not more than a hint: there are simple examples where the distribu-
tions of random variables converge to a distribution whose expectation is different
from the limit of the expectations of the distributions! (cf. Exercise 12.14).
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lim
n→∞Var(Nt) = lim

n→∞n · λt

n
·
(

1 − λt

n

)
= λt.

Actually, the expectation of a Poisson random variable X with parameter µ
is easy to compute:

E[X ] =
∞∑

k=0

k
µk

k!
e−µ = e−µ

∞∑
k=1

µk

(k − 1)!

= µe−µ
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k=1

µk−1

(k − 1)!
= µe−µ

∞∑
j=0

µj

j!
= µ.

In a similar way the variance can be determined (see Exercise 12.8), and we
arrive at the following rule.

The expectation and variance of a Poisson distribution.
Let X have a Poisson distribution with parameter µ; then

E[X ] = µ and Var(X) = µ.

12.3 The one-dimensional Poisson process

We will derive some properties of the sequence of random points X1, X2, . . .
that we considered in the previous section. What we derived so far is that for
any interval (s, s + t] the number N((s, s + t]) of points Xi in that interval is
a random variable with a Pois(λt) distribution.

Interarrival times

The differences
Ti = Xi − Xi−1

are called interarrival times. Here we define T1 = X1, the time of the first
arrival. To determine the probability distribution of T1, we observe that the
event {T1 > t} that the first call arrives after time t is the same as the event
{Nt = 0} that no calls have been made in [0, t]. But this implies that

P(T1 ≤ t) = 1 − P(T1 > t) = 1 − P(Nt = 0) = 1 − e−λt.

Therefore T1 has an exponential distribution with parameter λ.

To compute the joint distribution of T1 and T2, we consider the conditional
probability that T2 > t, given that T1 = s, and use the property that arrivals
in different intervals are independent:
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P(T2 > t |T1 = s) = P(no arrivals in (s, s + t] |T1 = s)
= P(no arrivals in (s, s + t])
= P(N((s, s + t]) = 0) = e−λt.

Since this answer does not depend on s, we conclude that T1 and T2 are
independent, and

P(T2 > t) = e−λt,

i.e., T2 also has an exponential distribution with parameter λ. Actually, al-
though the conclusion is correct, the method to derive it is not, because we
conditioned on the event {T1 = s}, which has zero probability. This problem
could be circumvented by conditioning on the event that T1 lies in some small
interval, but that will not be done here. Analogously, one can show that the Ti

are independent and have an Exp(λ) distribution. This nice property allows
us to give a simple definition of the one-dimensional Poisson process.

Definition. The one-dimensional Poisson process with intensity λ
is a sequence X1, X2, X3, . . . of random variables having the property
that the interarrival times X1, X2−X1, X3−X2, . . . are independent
random variables, each with an Exp(λ) distribution.

Note that the connection with Nt is as follows: Nt is equal to the number of
Xi that are smaller than (or equal to) t.

Quick exercise 12.2 We model the arrivals of email messages at a server as
a Poisson process. Suppose that on average 330 messages arrive per minute.
What would you choose for the intensity λ in messages per second? What is
the expectation of the interarrival time?

An obvious question is: what is the distribution of Xi? This has already been
answered in Chapter 11: since Xi is a sum of i independent exponentially
distributed random variables, we have the following.

The points of the Poisson process. For i = 1, 2, . . . the random
variable Xi has a Gam(i, λ) distribution.

The distribution of points

Another interesting question is: if we know that n points are generated in an
interval, where do these points lie? Since the distribution of the number of
points only depends on the length of the interval, and not on its location, it
suffices to determine this for an interval starting at 0. Let this interval be [0, a].
We start with the simplest case, where there is one point in [0, a]: suppose
that N([0, a]) = 1. Then, for 0 < s < a:
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P(X1 ≤ s |N([0, a]) = 1) =
P(X1 ≤ s, N([0, a]) = 1)

P(N([0, a]) = 1)

=
P(N([0, s]) = 1, N((s, a]) = 0)

P(N([0, a]) = 1)

=
λse−λse−λ(a−s)

λae−λa

=
s

a
.

We find that conditional on the event {N([0, a]) = 1}, the random variable
X1 is uniformly distributed over the interval [0, a].
Now suppose that it is given that there are two points in [0, a]: N([0, a]) =
2. In a way similar to what we did for one point, we can show that (see
Exercise 12.12)

P(X1 ≤ s, X2 ≤ t | N([0, a]) = 2) =
t2 − (t − s)2

a2
.

Now recall the result of Exercise 9.17: if U1 and U2 are two independent
random variables, both uniformly distributed over [0, a], then the joint distri-
bution function of V = min(U1, U2) and Z = max(U1, U2) is given by

P(V ≤ s, Z ≤ t) =
t2 − (t − s)2

a2
for 0 ≤ s ≤ t ≤ a.

Thus we have found that, if we forget about their order, the two points in
[0, a] are independent and uniformly distributed over [0, a]. With somewhat
more work, this generalizes to an arbitrary number of points, and we arrive
at the following property.

Location of the points, given their number. Given that
the Poisson process has n points in the interval [a, b], the locations
of these points are independently distributed, each with a uniform
distribution on [a, b].

12.4 Higher-dimensional Poisson processes

Our definition of the one-dimensional Poisson process, starting with the in-
terarrival times, does not generalize easily, because it is based on the ordering
of the real numbers. However, we can easily extend the assumptions of inde-
pendence, homogeneity, and the Poisson distribution property. To do this we
need a higher-dimensional version of the concept of length. We denote the k-
dimensional volume of a set A in k-dimensional space by m(A). For instance,
in the plane m(A) is the area of A, and in space m(A) is the volume of A.
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Definition. The k-dimensional Poisson process with intensity λ
is a collection X1, X2, X3, . . . of random points having the property
that if N(A) denotes the number of points in the set A, then
1. (Homogeneity) The random variable N(A) has a Poisson distri-

bution with parameter λm(A).
2. (Independence) For disjoint sets A1, A2, . . . , An the random vari-

ables N(A1), N(A2), . . . , N(An) are independent.

Quick exercise 12.3 Suppose that the locations of defects in a certain type of
material follow the two-dimensional Poisson process model. For this material
it is known that it contains on average five defects per square meter. What is
the probability that a strip of length 2 meters and width 5 cm will be without
defects?

In Figure 7.4 the locations of the buildings the architect wanted to distribute
over a 100-by-300-m terrain have been generated by a two-dimensional Poisson
process. This has been done in the following way. One can again show that
given the total number of points in a set, these points are uniformly distributed
over the set. This leads to the following procedure: first one generates a value
n from a Poisson distribution with the appropriate parameter (λ times the
area), then one generates n times a point uniformly distributed over the 100-
by-300 rectangle.
Actually one can generate a higher-dimensional Poisson process in a way that
is very similar to the natural way this can be done for the one-dimensional
process. Directly from the definition of the one-dimensional process we see
that it can be obtained by consecutively generating points with exponentially
distributed gaps. We will explain a similar procedure for dimension two. For
s > 0, let

Ms = N(Cs),

where Cs is the circular region of radius s, centered at the origin. Since Cs

has area πs2, Ms has a Poisson distribution with parameter λπs2. Let Ri

denote the distance of the ith closest point to the origin. This is illustrated
in Figure 12.2.
Note that Ri is the analogue of the ith arrival time for the one-dimensional
Poisson process: we have in fact that

Ri ≤ s if and only if Ms ≥ i.

In particular, with i = 1 and s =
√

t,

P
(
R2

1 ≤ t
)

= P
(
R1 ≤ √

t
)

= P
(
M√

t > 0
)

= 1 − e−λπt.

In other words: R2
1 is Exp(λπ) distributed. For general i, we can similarly

write
P
(
R2

i ≤ t
)

= P
(
Ri ≤

√
t
)

= P
(
M√

t ≥ i
)
.
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Fig. 12.2. The Poisson process in the plane, with the two circles of the two points
closest to the origin.

So

P
(
R2

i ≤ t
)

= 1 − e−λπt
i−1∑
j=0

(λπt)j

j!
,

which means that R2
i has a Gam(i, λπ) distribution—as we saw on page 157.

Since gamma distributions arise as sums of independent exponential distribu-
tions, we can also write

R2
i = R2

i−1 + Ti,

where the Ti are independent Exp(λπ) random variables (and where R0 = 0).
Note that this is quite similar to the one-dimensional case. To simulate the
two-dimensional Poisson process from a sequence U1, U2, . . . of independent
U(0, 1) random variables, one can therefore proceed as follows (recall from
Section 6.2 that −(1/λ) ln(Ui) has an Exp(λ) distribution): for i = 1, 2, . . .
put

Ri =

√
R2

i−1 −
1

λπ
ln(U2i);

this gives the distance of the ith point to the origin, and then put the point
on this circle according to an angle value generated by 2πU2i−1. This is the
correct way to do it, because one can show that in polar coordinates the radius
and the angle of a Poisson process point are independent of each other, and
the angle is uniformly distributed over [0, 2π]. The latter is called the isotropy
property of the Poisson process.
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12.5 Solutions to the quick exercises

12.1 The probability of exactly one call in [0, s) and no calls in [s, 2s] equals

P(N([0, s)) = 1, N([s, 2s]) = 0) = P(N([0, s)) = 1)P(N([s, 2s]) = 0)
= P(N([0, s)) = 1)P(N([0, s]) = 0)
= λse−λs · e−λs,

because of independence and homogeneity. In the same way, the probability
of exactly one call in [s, 2s] and no calls in [0, s) is equal to e−λs ·λse−λs. And
indeed: λse−λs · e−λs + e−λs · λse−λs = 2λse−λ·2s.

12.2 Because there are 60 seconds in a minute, we have 60λ = 330. It follows
that λ = 5 1

2 . Since the interarrival times have an Exp(λ) distribution, the
expected time between messages is 1/λ = 0.18 second.

12.3 The intensity of this process is λ = 5 per m2. The area of the strip is
2 · (1/20) = 1/10 m2. Hence the probability that no defects occur in the strip
is e−λ·(area of strip) = e−5·(1/10) = e−1/2 = 0.60.

12.6 Exercises

12.1 � In each of the following examples, try to indicate whether the Poisson
process would be a good model.

a. The times of bankruptcy of enterprises in the United States.
b. The times a chicken lays its eggs.
c. The times of airplane crashes in a worldwide registration.
d. The locations of worngly spelled words in a book.
e. The times of traffic accidents at a crossroad.

12.2 The number of customers that visit a bank on a day is modeled by a
Poisson distribution. It is known that the probability of no customers at all
is 0.00001. What is the expected number of customers?

12.3 Let N have a Pois(4) distribution. What is P(N = 4)?

12.4 Let X have a Pois(2) distribution. What is P(X ≤ 1)?

12.5 � The number of errors on a hard disk is modeled as a Poisson random
variable with expectation one error in every Mb, that is, in every 220 bytes.

a. What is the probability of at least one error in a sector of 512 bytes?
b. The hard disk is an 18.62-Gb disk drive with 39 054 015 sectors. What is

the probability of at least one error on the hard disk?
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12.6 � A certain brand of copper wire has flaws about every 40 centimeters.
Model the locations of the flaws as a Poisson process. What is the probability
of two flaws in 1 meter of wire?

12.7 � The Poisson model is sometimes used to study the flow of traffic ([15]).
If the traffic can flow freely, it behaves like a Poisson process. A 20-minute
time interval is divided into 10-second time slots. At a certain point along the
highway the number of passing cars is registered for each 10-second time slot.
Let nj be the number of slots in which j cars have passed for j = 0, . . . , 9.
Suppose that one finds

j 0 1 2 3 4 5 6 7 8 9

nj 19 38 28 20 7 3 4 0 0 1

Note that the total number of cars passing in these 20 minutes is 230.

a. What would you choose for the intensity parameter λ?
b. Suppose one estimates the probability of 0 cars passing in a 10-second

time slot by n0 divided by the total number of time slots. Does that
(reasonably) agree with the value that follows from your answer in a?

c. What would you take for the probability that 10 cars pass in a 10-second
time slot?

12.8 � Let X be a Poisson random variable with parameter µ.

a. Compute E[X(X − 1)].
b. Compute Var(X), using that Var(X) = E[X(X − 1)] + E[X ] − (E[X ])2.

12.9 Let Y1 and Y2 be independent Poisson random variables with parameter
µ1, respectively µ2. Show that Y = Y1 + Y2 also has a Poisson distribution.
Instead of using the addition rule in Section 11.1 as in Exercise 11.2, you
can prove this without doing any computations by considering the number
of points of a Poisson process (with intensity 1) in two disjoint intervals of
length µ1 and µ2.

12.10 Let X be a random variable with a Pois(µ) distribution. Show the
following. If µ < 1, then the probabilities P(X = k) are strictly decreasing
in k. If µ > 1, then the probabilities P(X = k) are first increasing, then
decreasing (cf. Figure 12.1). What happens if µ = 1?

12.11 � Consider the one-dimensional Poisson process with intensity λ. Show
that the number of points in [0, t], given that the number of points in [0, 2t]
is equal to n, has a Bin(n, 1

2 ) distribution.
Hint: write the event {N([0, s]) = k, N([0, 2s]) = n} as the intersection of the
(independent!) events {N([0, s]) = k} and {N((s, 2s]) = n − k}.
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12.12 We consider the one-dimensional Poisson process. Suppose for some
a > 0 it is given that there are exactly two points in [0, a], or in other words:
Na = 2. The goal of this exercise is to determine the joint distribution of X1

and X2, the locations of the two points, conditional on Na = 2.

a. Prove that for 0 < s < t < a

P(X1 ≤ s, X2 ≤ t, Na = 2)
= P(X2 ≤ t, Na = 2) − P(X1 > s, X2 ≤ t, Na = 2) .

b. Deduce from a that

P(X1 ≤ s, X2 ≤ t, Na = 2) = e−λa

(
λ2t2

2!
− λ2(t − s)2

2!

)
.

c. Deduce from b that for 0 < s < t < a

P(X1 ≤ s, X2 ≤ t | Na = 2) =
t2 − (t − s)2

a2
.

12.13 Walking through a meadow we encounter two kinds of flowers, daisies
and dandelions. As we walk in a straight line, we model the positions of the
flowers we encounter with a one-dimensional Poisson process with intensity λ.
It appears that about one in every four flowers is a daisy. Forgetting about
the dandelions, what does the process of the daisies look like? This question
will be answered with the following steps.

a. Let Nt be the total number of flowers, Xt the number of daisies, and Yt

be the number of dandelions we encounter during the first t minutes of
our walk. Note that Xt + Yt = Nt. Suppose that each flower is a daisy
with probability 1/4, independent of the other flowers. Argue that

P(Xt = n, Yt = m |Nt = n + m) =
(

n + m

n

)(1
4

)n(3
4

)m

.

b. Show that

P(Xt = n, Yt = m) =
1
n!

1
m!

(1
4

)n(3
4

)m

e−λt(λt)n+m,

by conditioning on Nt and using a.
c. By writing e−λt = e−(λ/4)te−(3λ/4)t and summing over m, show that

P(Xt = n) =
1
n!

e−(λ/4)t
(λt

4

)n

.

Since it is clear that the numbers of daisies that we encounter in disjoint time
intervals are independent, we may conclude from c that the process (Xt) is
again a Poisson process, with intensity λ/4. One often says that the process
(Xt) is obtained by thinning the process (Nt). In our example this corresponds
to picking all the dandelions.
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12.14 � In this exercise we look at a simple example of random variables Xn

that have the property that their distributions converge to the distribution of
a random variable X as n → ∞, while it is not true that their expectations
converge to the expectation of X . Let for n = 1, 2, . . . the random variables
Xn be defined by

P(Xn = 0) = 1 − 1
n

and P(Xn = 7n) =
1
n

.

a. Let X be the random variable that is equal to 0 with probability 1. Show
that for all a the probability mass functions pXn(a) of the Xn converge to
the probability mass function pX(a) of X as n → ∞. Note that E[X ]=0.

b. Show that nonetheless E[Xn] = 7 for all n.




