Common Correctness and
Performance Issues

Acknowledgments

 Authored by
— Sebastian Burckhardt, MSR Redmond

Concepts

e Data locality, Cache Coherence

Performance False Sharing

Concept

Lock Overhead
Lock Contention

Interlocked
Volatile

 Data Races
Correctness ° Atom|C|ty ViOIatiOnS

Concept

e Deadlocks, Lock Leveling

~—

Practical Parallel and Concurrent Programming
6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

Parallel Performance: Not always easy

 Evenif a problem is parallelizable in principle, there
may be practical limitations

— Takes time to start a task on a processor
— Takes time to move data between processors
— Takes time to synchronize tasks

 Anthropomorphic example: Imagine you have to write
the numbers 1 through 1000 on a single sheet of paper.

— If you are a team of 2 and well coordinated, you may
indeed achieve a speed-up of about 2x

— But can you achieve a speed-up of 100x with 100 friends?

Potential Performance Problems

e Task Overhead

— Takes time to start a task and wait for its result

— If amount of work done by task is very small, not
worth doing in parallel

e Data Locality & Cache Behavior

— Performance of computation depends HUGELY on
how well the cache is working (i.e. how many of
the memory accesses hit in the cache).

— Naive parallelization may cause too many cache
misses, in particular if processors are “fighting” for
the same cache lines

Cache Coherence

NERD DERE Do

[i S i

L | | |

e Each cacheline, on each processor, has one of these
states:
— i-invalid : not cached here
— s -shared : cached, but immutable
— X - exclusive: cached, and can be read or written

e State transitions require communication between
caches (cache coherence protocol)

— If a processor writes to a line, it removes it from all other
caches

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com

Ping-Pong & False Sharing

* Ping-Pong
— If two processors both keep writing to the same
location, cache line has to go back and forth

— Very inefficient (lots of cache misses)

e False Sharing

— Two processors writing to two different variables
may happen to write to the same cacheline

e |f both variables are allocated on the same cache line

— Get ping-pong effect as above, and horrible
performance

False Sharing Example

void WithFalseSharing()
{
Random randl = new Random(), rand2 = new Random();
int[] resultsl = new int[20000000],
results2 = new int[20000000];
Parallel.Invoke(
() =>{
for (int i = @0; i < resultsl.Length; i++)
resultsl[i] randl.Next();

}
() =>{
for (int i = 0; i < results2.Length; i++)
results2[i] rand2.Next();

1)

Practical Parallel and Concurrent Programming
6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

False Sharing Example

rand1, rand2
are allocated

void WithFalseSharing() =l SRS
{
Random randl = new Random(), rand2 = new R: h%ﬂéﬁ;ﬁ:re
int[] resultsl = new int[20000000], '
results2 = new int[20000000];

Parallel.Invoke(
() =>A{
for (int i = 0; 1 < resultsl.Lengt
resultsi[i] = randl.Next(); Call to Next()
}, writes to the
() => { random
for (int i = 0; i < results2.Lengt object
. . =>
| results2[i] = rand2.Next(); Ping-Pong
1) Effect

Practical Parallel and Concurrent Programming
6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

False Sharing, Eliminated

void WithoutFalseSharing()

rand1, rand2

are allocated

by different
tasks

=>

Not likely on

same cache
line.

{
int[] resultsl, results2;
Parallel.Invoke(
() => {
Random randl = new Random();
resultsl = new int[20000000];
for (int i = 0; i < resultsl fength; i++)
resultsl[i] = randlNext();
}s
() =>{
Random rand2 = new Random();
results2 = new int[20000000];
for (int 1 = 0; 1 < results2.Length; i++)
results2[i] = rand2.Next();
1)
}

Practical Parallel and Concurrent Programming
6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

10

LOCKS AND PERFORMANCE

Common Problems With Locking

Data Races

Contention

Atomicity
Violations Deadlocks

Insufficient locking Too much locking

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 12

Example: Lock Contention

* Consider this example

Parallel.Invoke(
() => { lock(gameboard) { MoveRobot(rl); } },
() => { lock(gameboard) { MoveRobot(r2); } },

e There is no parallelism!
— Only one task can work at a time
— May as well write sequential code

CS13

Locking Tradeoffs

* Coarse-Grained Locking

— Use few locks (e.g. single global lock)
(i.e. many locations protected by the same lock)

— Advantage: simple to implement, little overhead
— Danger: lock contention may destroy parallelism

* Fine-Grained Locking
— Use many locks (e.g. one lock for each object)
— Advantage: more parallelism
— Disadvantage: overhead, difficult to implement
— Danger: may lead to atomicity violations
— Danger: may lead to deadlocks

Slide 14

Cs13 Second mention of atomicity violations before term is defined.
Caitlin Sadowski, 7/20/2010

Example: Locking Overhead

* Consider this sequential computation

e Counts how many times each filename-length occurs

string[] filenames = /* large list of filenames */;

public void CountLengths()
{
int[] count = new int[maxlength];
foreach (string s in filenames)
count[s.Length]++;

Example: Locking Overhead

e Consider this parallelization:

Parallel.For(@, filenames.Length, (int i) =>

{
int len = filenames[i].Length;
lock (lockarray[len])
count[len]++;
1)

e Instead of a speedup we get 13x slowdown

 Problem: takes too much time to acquire and
release locks

Three Main Suggestions

* Trick 1: Reduce need for locks by better
partitioning the computation

e Trick 2: Reduce size of critical sections: leads
to less contention; and may enable Trick 3

e Trick 3: Replace small critical sections with
interlockeds and volatiles

Trick 1: Partition Computation

e Recall bad parallelization of histogram
computation (13x slowdown):

Parallel.For(@, filenames.Length, (int i) =>

{
int len = filenames[i].Length;
lock (lockarray[len])
count[len]++;
1

 Can we reduce locking in this example?
— Yes. Partition the computation into isolated pieces.

Partitioned Histogram Computation

Parallel.For(®, numpartitions, (int p) =>

{
// create local count array
int[] localcount = new int[maxlength];
// count partition of filenames, store results in localcount
for (int i = p * filenames.Length / numpartitions;
i< (p+ 1) * filenames.Length / numpartitions;
i++)
localcount[filenames[i].Length]++;
// write localcounts to count - lock held only for short time
lock (count)
{
for (int c = @; c < maxlength; c++)
count[c] += localcount[c];
}
1)

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com

Trick 2: Reduce Size

of Contended Critical Section

e EXAMPLE: Suppose
— variable x is protected by lock a
— lock a suffers from contention
— compute() is a time-consuming computation that does not access x.

e Instead of lock (a)
{
X = computation() ;
}
e Write int result = computation();
lock (a)
{
X = result;

}

Trick 3: Interlocked/Volatile

 |f your critical section contains a single
operation only, such as
— Reads a shared variable
— Writes to a shared variable
— Adds a number to a shared variable

* You can use interlocked or volatile operations
instead of locks.

Example: Use Interlocked Operation

BEFORE:
Parallel.For(@, filenames.Length, (int i) =>
{
int len = filenames[i].Length;
lock (lockarray[len])
count[len]++;
1)
AFTER:
Parallel.For(@, filenames.Length, (int i) =>
{
Interlocked.Increment(ref count[filenames[i].Length]);
1)

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 22

Volatile Variables and Fields

e Add “volatile” type qualifier to field or
variable

— Means every access to that field or variable is
considered a ‘volatile’ access

e |f a critical section protects a single read or a
single write, we can use a volatile read or
write instead.

Example: Volatile/Interlockeds Can
Replace Locks

class MyCounter()
{
Object mylock = new Object();
int balance;
public void Deposit(int what)
{
lock(mylock)
balance = balance + what;

}
public int GetBalance()

{
lock(mylock)
return balance;

}

public void SetBalance(int val)

{
lock(mylock)

balance = val;

class MyCounter()

volatile int balance;

public void Deposit(int what)

{
Interlocked.Add(ref balance, what)

}
public int GetBalance()

{

return balance; /* volatile read */

}

public int GetBalance(int val)

{

balance = val; /* volatile write */

}

Practical Parallel and Concurrent Programming
6/}22/2010 DRAFT: comments to msrpcpcp@microsoft.com 24

Performance of Interlocked/Volatile

e Depends on architecture

— Measure what you want to know... don’t rely on
people telling you

 That said, typically, on x86 multiprocessors:

— Interlocked is somewhat faster than locking

e Particularly fast if access goes to a cache line that is already
in X state.

— Volatile read/write is MUCH faster than locking

e Speed of volatile read/write is almost exactly same as speed
of normal read/write (gets compiled to same instruction)

Interlocked, Volatile, And Race
Detection

e Race detector will not report races between
— Interlocked access & volatile access
— volatile access & volatile access
— Interlocked access & Interlocked access

 Race detector does report data races between
— Interlocked access & normal access
— Volatile access & normal access

CASE STUDY: ANTISOCIAL ROBOTS

Parallel Loop in AntiSocialRobots

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

foreach (Robot s in _robots) | read position of all
{ other robots to

- figure out into which
} cell this robot wants apply in
! to move - parallel to
if (...) - each robot
{ If the cell it wants to

- move to is free,
) move it there.
} _

Bug 1: Data Race on Robot.Location

class Robot
{

Parallel.ForEach(_robots, SimulateOneStep); .
public RoomPoint Location;

void SimulateOneStep(Robot r) { }

—_

foreach (Robot s in _robots)

{ read position of all
other robots to
RoomPoint ptS = s.Location; — figure out into which

cell this robot wants

} to move

if (...) 7

{ If the cell it wants to
- move to is free,
r.Location = new RoomPoint(ptR.X, ptR.Y); move it there.

} J

} Practical Parallel and Concurrent Programming

6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 29

Fix: Protect Robot.Location with Lock

class Robot
 \We can use the lock of {
the RObOt ObJECt to ;ublic RoomPoint Location;
protect the field }
Location
lock s { ... ‘\/5 No more races

RoomPoint ptS = s.Location;

.} on Robot.Location

lockr{...
r.Location = new RoomPoint(ptR.X, ptR.Y);

}

Bug 2: Data Race on roomCells

Parallel.ForEach(_robots, SimulateOneStep);
public class MainWindow

void SimulateOneStep(Robot r) { {
Robot[,] roomCells;
foreach (Robot s in _robots) }
{
}
if (... && null == roomCells[ptR.X, ptR.Y])
{
If the cell it wants to
- move to is free,
move it there.
_roomCells ation.X, r.Location.Y] = null;
_roomCells[ptR.X, ptR.Y] =r1;
}

Practical Parallel and Concurrent Programming
} 6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 31

Protecting roomCells w/ single lock

Single lock protects the public class MainWindow

whole array. {

Destroys parallelism! Robot[,] roomCells;

}

lock (this)
{
if (... && roomCells[ptR.X, ptR.Y] == null)
{
_roomCells[r.Location.X, r.Location.Y] = null;
_roomCells[ptR.X, ptRY] =r;
}

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com

32

Protecting roomCells w/ fine-grained locks

Object[,] _cellLocks = new ObjectfROOM _SIZE, ROOM_SIZE];

lock _celllocks[newLoc.X, newlLoc.Y]

{

Use one lock per cell.

lock _celllocks[oldLoc.X, oldLoc.Y]
{

_roomCells[oldLoc.X, oldLoc.Y] = null;
_roomCells[newlLoc.X, newLoc.Y] =r;

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 33

Bug 3: Deadlock.

Cycle in lock acquisition graph
(lock order not consistent)

lock _celllocks[newLoc.X, newlLoc.Y] AN
{ 0 r2
lock _celllocks[oldLoc.X, oldLoc.Y]
{ 0 1
}

_celllocks[0,1]

_celllocks[1,0]

Practical Parallel and Concurrent Programmin®
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 34

Fix: Choose Consistent Lock Order

// lock level of _celllLocks[X, Y] is
// Y * ROOM_SIZE + X

object firstlock = _celllLocks[newLoc.X, newlLoc.Y];
object secondlock = celllLocks[origlLoc.X, origlLoc.Y];

// 1f necessary swap locks to ensure consistent order
if ((newLoc.Y * ROOM _SIZE + newlLoc.X) >
(origlLoc.Y * ROOM _SIZE + origlLoc.X))

{
object tmp = firstlock;
firstlock = secondlock;
secondlock = tmp;

}

lock (firstlock)

{

lock (secondlock)

{ Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com

Problem solved... oris it?

 We've successfully fixed the data races in
antisocial robots using locks
 \Was not as easy as it looked at first

— Final design: use 3 critical sections and
sophisticated lock acquisition order scheme

 What have we learned?
— Designing good locking is a lot of work.
— Can we solve this problem without locks?

Antisocial Robots Without Locks

Label all cells with a number
between 0 and 8 as follows:

B = o 2 o -
3(4|5(3|14 531|453
6|7 (8|6 |7 |86 |7 |86
L EENL ENEN. ENEN
3(4|5(3|14|5(3|4]|5]3
6|7 (8|6 |7 |86 |7 |86
1|2 1|2 1|2
H4 5545345:5

6/22/2010

Stripe the computation!

In each turn, perform these 9
steps in sequence:

Move all robots in cells labeled 0 in parallel.
Move all robots in cells labeled 1 in parallel.
Move all robots in cells labeled 2 in parallel.

Move all robots in cells labeled 8 in parallel.

No interference!
— Within each step, robots are too far apart to

interfere

— Across steps, there is no parallelism

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 37

Antisocial Robots Without Locks

for (int stripe = 0; stripe < 9; stripe++)
Parallel.ForEach(_robots, (Robot r) =>

.1 2.1 2.1 2. {

3[4]5[3]4]5|3]|4][5]3 if (r.lastmoved < _framelndex
6|7|8|6|7|8|6|7]|8]6 : L .

"Bl B OB &&(r.Locat!on.X%3) == (str.lpe%3)
325325325 |3 && (r.Location.Y % 3) == (stripe / 3))
6|7(8|6|7|8|6|7|8]6 {

_Ha BE BE SimulateOneStep(r);
3(4|5|3|4a|5|3]|4]|5]3

r.lastmoved = _framelndex;

}
1);

Practical Parallel and Concurrent Programming
6/22/2010 DRAFT: comments to msrpcpcp@microsoft.com 38

