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Concepts

• Data locality, Cache Coherence

• False sharing

• Lock Overhead

• Lock Contention

• Interlocked

• Volatile

• Data Races

• Atomicity Violations

• Deadlocks, Lock Leveling
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Parallel Performance: Not always easy

• Even if a problem is parallelizable in principle, there 
may be practical limitations

– Takes time to start a task on a processor

– Takes time to move data between processors

– Takes time to synchronize tasks

• Anthropomorphic example: Imagine you have to write 
the numbers 1 through 1000 on a single sheet of paper.

– If you are a team of 2 and well coordinated, you may 
indeed achieve a speed-up of about 2x

– But can you achieve a speed-up of 100x with 100 friends?
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Potential Performance Problems

• Task Overhead

– Takes time to start a task and wait for its result

– If amount of work done by task is very small, not 
worth doing in parallel

• Data Locality & Cache Behavior

– Performance of computation depends HUGELY on 
how well the cache is working (i.e. how many of 
the memory accesses hit in the cache).

– Naïve parallelization may cause too many cache 
misses, in particular if processors are “fighting” for 
the same cache lines
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Cache Coherence

• Each cacheline, on each processor, has one of these 
states:
– i - invalid : not cached here

– s - shared : cached, but immutable

– x - exclusive: cached, and can be read or written

• State transitions require communication between 
caches (cache coherence protocol)
– If a processor writes to a line, it removes it from all other 

caches
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Ping-Pong  & False Sharing

• Ping-Pong

– If two processors both keep writing to the same 

location, cache line has to go back and forth

– Very inefficient (lots of cache misses)

• False Sharing

– Two processors writing to two different variables 

may happen to write to the same cacheline

• If both variables are allocated on the same cache line 

– Get ping-pong effect as above, and horrible 

performance
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False Sharing Example

void WithFalseSharing()

{

Random rand1 = new Random(), rand2 = new Random();

int[] results1 = new int[20000000], 

results2 = new int[20000000];

Parallel.Invoke(

() => {

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}
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False Sharing Example

void WithFalseSharing()

{

Random rand1 = new Random(), rand2 = new Random();

int[] results1 = new int[20000000], 

results2 = new int[20000000];

Parallel.Invoke(

() => {

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}
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False Sharing, Eliminated?

void WithoutFalseSharing()

{

int[] results1, results2;

Parallel.Invoke(

() => {

Random rand1 = new Random();

results1 = new int[20000000];

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

Random rand2 = new Random();

results2 = new int[20000000];

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}
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LOCKS AND PERFORMANCE

Part I
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Common Problems With Locking

Overhead

Atomicity 

Violations Deadlocks

Data Races

Too much lockingInsufficient locking
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Example: Lock Contention

• Consider this example

• There is no parallelism! 

– Only one task can work at a time

– May as well write sequential code

Parallel.Invoke( 

() => { lock(gameboard) { MoveRobot(r1); } },

() => { lock(gameboard) { MoveRobot(r2); } },

)
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Locking Tradeoffs

• Coarse-Grained Locking
– Use few locks (e.g. single global lock)

(i.e. many locations protected by the same lock)

– Advantage: simple to implement, little overhead

– Danger: lock contention may destroy parallelism

• Fine-Grained Locking
– Use many locks (e.g. one lock for each object)

– Advantage: more parallelism

– Disadvantage: overhead, difficult to implement

– Danger: may lead to atomicity violations

– Danger: may lead to deadlocks
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Slide 14

CS13 Second mention of atomicity violations before term is defined.
Caitlin Sadowski, 7/20/2010



Example: Locking Overhead

string[] filenames = /* large list of filenames */;

public void CountLengths()

{

int[] count = new int[maxlength];

foreach (string s in filenames)

count[s.Length]++;

}
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• Consider this sequential computation 

• Counts how many times each filename-length occurs



Example: Locking Overhead

• Consider this parallelization:

• Instead of a speedup we get 13x slowdown

• Problem: takes too much time to acquire and 
release locks
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Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});



Three Main Suggestions

• Trick 1: Reduce need for locks by better 

partitioning the computation 

• Trick 2: Reduce size of critical sections: leads 

to less contention; and may enable Trick 3

• Trick 3: Replace small critical sections with 

interlockeds and volatiles
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Trick 1: Partition Computation

• Recall bad parallelization of histogram 
computation (13x slowdown):

• Can we reduce locking in this example?

– Yes. Partition the computation into isolated pieces.
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Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});



Partitioned Histogram Computation

Parallel.For(0, numpartitions, (int p) =>

{

// create local count array

int[] localcount = new int[maxlength];

// count partition of filenames, store results in localcount

for (int i = p * filenames.Length / numpartitions;

i < (p + 1) * filenames.Length / numpartitions;

i++)

localcount[filenames[i].Length]++;

// write localcounts to count – lock held only for short time

lock (count)

{

for (int c = 0; c < maxlength; c++)

count[c] += localcount[c];

}

});

6/22/2010

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 19



Trick 2: Reduce Size

of Contended Critical Section
• EXAMPLE: Suppose 

– variable x is protected by lock a

– lock a suffers from contention

– compute() is a time-consuming computation that does not access x.

• Instead of lock (a)   
{  

x = computation() ; 
}

• Write int result = computation();

lock (a)   
{  

x = result; 
}
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Trick 3: Interlocked/Volatile

• If your critical section contains a single 

operation only, such as

– Reads a shared variable

– Writes to a shared variable

– Adds a number to a shared variable

• You can use interlocked or volatile operations 

instead of locks.
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Example: Use Interlocked Operation
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BEFORE:

Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});

AFTER:

Parallel.For(0, filenames.Length, (int i) =>

{

Interlocked.Increment(ref count[filenames[i].Length]);

});   



Volatile Variables and Fields

• Add “volatile” type qualifier to field or 
variable

– Means every access to that field or variable is 
considered a ‘volatile’ access

• If a critical section protects a single read or a 
single write, we can use a volatile read or 
write instead.
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Example: Volatile/Interlockeds Can 

Replace Locks
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class MyCounter()

{

Object mylock =  new Object();

int balance;

public void Deposit(int what)

{

lock(mylock)

balance = balance + what;

}

public int GetBalance()

{

lock(mylock)

return balance;

}

public void SetBalance(int val)

{

lock(mylock)

balance = val;

}

class MyCounter()

{

volatile int balance;

public void Deposit(int what)

{

Interlocked.Add(ref balance, what)

}

public int GetBalance()

{

return balance; /* volatile read */

}

public int GetBalance(int val)

{

balance = val; /* volatile write */

}



Performance of Interlocked/Volatile

• Depends on architecture

– Measure what you want to know… don’t rely on 

people telling you

• That said, typically, on x86 multiprocessors:

– Interlocked is somewhat faster than locking

• Particularly fast if access goes to a cache line that is already 

in X state.

– Volatile read/write is MUCH faster than locking

• Speed of volatile read/write is almost exactly same as speed 

of normal read/write (gets compiled to same instruction)
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Interlocked, Volatile, And Race 

Detection

• Race detector will not report races between

– Interlocked access & volatile access

– volatile access & volatile access

– Interlocked access & Interlocked access

• Race detector does report data races between 

– Interlocked access & normal access

– Volatile access & normal access
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CASE STUDY: ANTISOCIAL ROBOTS

Part I

27
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Parallel Loop in AntiSocialRobots

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

…

}

...

if (...)

{

….

}

}

apply in 

parallel to 

each robot

read position of all 

other robots to 

figure out into which 

cell this robot wants 

to move

If the cell it wants to 

move to is free, 

move it there.
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Bug 1: Data Race on Robot.Location

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

...

RoomPoint ptS = s.Location;

...

}

...

if (...)

{

...

r.Location = new RoomPoint(ptR.X, ptR.Y);

}

}

class Robot

{

...

public RoomPoint Location;

}

read position of all 

other robots to 

figure out into which 

cell this robot wants 

to move

If the cell it wants to 

move to is free, 

move it there.
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Fix: Protect Robot.Location with Lock

• We can use the lock of 

the Robot object to 

protect the field 

Location

class Robot

{

...

public RoomPoint Location;

}

lock s { ...

RoomPoint ptS = s.Location;

... }

lock r { ...

r.Location = new RoomPoint(ptR.X, ptR.Y);

}

�No more races 

on Robot.Location
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Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

}

...

if (… && null == roomCells[ptR.X, ptR.Y])

{

_roomCells[r.Location.X, r.Location.Y] = null;

_roomCells[ptR.X, ptR.Y] = r;

...

}

}

Bug 2: Data Race on roomCells

If the cell it wants to 

move to is free, 

move it there.

public class MainWindow

{

Robot[,] _roomCells;

}
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Protecting roomCells w/ single lock

lock (this)

{

if (… && roomCells[ptR.X, ptR.Y] == null)

{

_roomCells[r.Location.X, r.Location.Y] = null;

_roomCells[ptR.X, ptR.Y] = r;

...

}

}

public class MainWindow

{

Robot[,] _roomCells;

}

Single lock protects the 

whole array.

Destroys parallelism! 
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Protecting roomCells w/ fine-grained locks

lock _celllocks[newLoc.X, newLoc.Y]

{

lock _celllocks[oldLoc.X, oldLoc.Y]

{

….

_roomCells[oldLoc.X, oldLoc.Y] = null;

_roomCells[newLoc.X, newLoc.Y] = r;

...

}

Object[,] _cellLocks = new Object[ROOM_SIZE, ROOM_SIZE];

Use one lock per cell.
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Bug 3: Deadlock.

Cycle in lock acquisition graph

(lock order not consistent)

lock _celllocks[newLoc.X, newLoc.Y]

{

lock _celllocks[oldLoc.X, oldLoc.Y]

{                        …

}

}

r1

r2
0 1

0

1

_celllocks[0,1]

_celllocks[1,0]
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Fix: Choose Consistent Lock Order
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// lock level of _cellLocks[X, Y] is 

// Y * ROOM_SIZE + X

object firstlock = _cellLocks[newLoc.X, newLoc.Y];

object secondlock = _cellLocks[origLoc.X, origLoc.Y];

// if necessary swap locks to ensure consistent order

if ((newLoc.Y * ROOM_SIZE + newLoc.X) > 

(origLoc.Y * ROOM_SIZE + origLoc.X))

{

object tmp = firstlock;

firstlock = secondlock;

secondlock = tmp;

}

lock (firstlock)

{

lock (secondlock)

{



Problem solved… or is it?

• We’ve successfully fixed the data races in 

antisocial robots using locks

• Was not as easy as it looked at first

– Final design: use 3 critical sections and 

sophisticated lock acquisition order scheme

• What have we learned?

– Designing good locking is a lot of work. 

– Can we solve this problem without locks?
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Antisocial Robots Without Locks

• Stripe the computation!

• In each turn, perform these 9 

steps in sequence:
– Move all robots in cells labeled 0 in parallel. 

– Move all robots in cells labeled 1 in parallel. 

– Move all robots in cells labeled 2 in parallel. 

– …

– Move all robots in cells labeled 8 in parallel.

• No interference!

– Within each step, robots are too far apart to 

interfere

– Across steps, there is no parallelism

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

• Label all cells with a number 

between 0 and 8 as follows:
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Antisocial Robots Without Locks

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

for (int stripe = 0; stripe < 9; stripe++)

Parallel.ForEach(_robots, (Robot r) =>

{

if (r.lastmoved < _frameIndex

&& (r.Location.X % 3) == (stripe % 3)

&& (r.Location.Y % 3) == (stripe / 3))

{

SimulateOneStep(r);

r.lastmoved = _frameIndex;

}

});
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