
Common Correctness and

Performance Issues

Unit 2.b

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010 1

Acknowledgments

• Authored by

– Sebastian Burckhardt, MSR Redmond

9/20/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 2

Concepts

• Data locality, Cache Coherence

• False sharing

• Lock Overhead

• Lock Contention

• Interlocked

• Volatile

• Data Races

• Atomicity Violations

• Deadlocks, Lock Leveling

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 36/16/2010

Performance

Concept

Correctness

Concept

Code

Concept

Parallel Performance: Not always easy

• Even if a problem is parallelizable in principle, there
may be practical limitations

– Takes time to start a task on a processor

– Takes time to move data between processors

– Takes time to synchronize tasks

• Anthropomorphic example: Imagine you have to write
the numbers 1 through 1000 on a single sheet of paper.

– If you are a team of 2 and well coordinated, you may
indeed achieve a speed-up of about 2x

– But can you achieve a speed-up of 100x with 100 friends?

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 4

Potential Performance Problems

• Task Overhead

– Takes time to start a task and wait for its result

– If amount of work done by task is very small, not
worth doing in parallel

• Data Locality & Cache Behavior

– Performance of computation depends HUGELY on
how well the cache is working (i.e. how many of
the memory accesses hit in the cache).

– Naïve parallelization may cause too many cache
misses, in particular if processors are “fighting” for
the same cache lines

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 5

Cache Coherence

• Each cacheline, on each processor, has one of these
states:
– i - invalid : not cached here

– s - shared : cached, but immutable

– x - exclusive: cached, and can be read or written

• State transitions require communication between
caches (cache coherence protocol)
– If a processor writes to a line, it removes it from all other

caches

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6

P1 P2 P3

i i i i

P3 P1 P2 P3

s i s s

P3 P1 P2 P3

i i x i

P3

Ping-Pong & False Sharing

• Ping-Pong

– If two processors both keep writing to the same

location, cache line has to go back and forth

– Very inefficient (lots of cache misses)

• False Sharing

– Two processors writing to two different variables

may happen to write to the same cacheline

• If both variables are allocated on the same cache line

– Get ping-pong effect as above, and horrible

performance
6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 7

False Sharing Example

void WithFalseSharing()

{

Random rand1 = new Random(), rand2 = new Random();

int[] results1 = new int[20000000],

results2 = new int[20000000];

Parallel.Invoke(

() => {

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 86/16/2010

False Sharing Example

void WithFalseSharing()

{

Random rand1 = new Random(), rand2 = new Random();

int[] results1 = new int[20000000],

results2 = new int[20000000];

Parallel.Invoke(

() => {

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 96/16/2010

Call to Next()

writes to the

random

object

=>

Ping-Pong

Effect

rand1, rand2

are allocated

at same time

=>

likely on same

cache line.

False Sharing, Eliminated?

void WithoutFalseSharing()

{

int[] results1, results2;

Parallel.Invoke(

() => {

Random rand1 = new Random();

results1 = new int[20000000];

for (int i = 0; i < results1.Length; i++)

results1[i] = rand1.Next();

},

() => {

Random rand2 = new Random();

results2 = new int[20000000];

for (int i = 0; i < results2.Length; i++)

results2[i] = rand2.Next();

});

}
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 106/16/2010

rand1, rand2

are allocated

by different

tasks

=>

Not likely on

same cache

line.

LOCKS AND PERFORMANCE

Part I

11
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Common Problems With Locking

Overhead

Atomicity

Violations Deadlocks

Data Races

Too much lockingInsufficient locking

12
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010

Contention

Example: Lock Contention

• Consider this example

• There is no parallelism!

– Only one task can work at a time

– May as well write sequential code

Parallel.Invoke(

() => { lock(gameboard) { MoveRobot(r1); } },

() => { lock(gameboard) { MoveRobot(r2); } },

)

13
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010

Locking Tradeoffs

• Coarse-Grained Locking
– Use few locks (e.g. single global lock)

(i.e. many locations protected by the same lock)

– Advantage: simple to implement, little overhead

– Danger: lock contention may destroy parallelism

• Fine-Grained Locking
– Use many locks (e.g. one lock for each object)

– Advantage: more parallelism

– Disadvantage: overhead, difficult to implement

– Danger: may lead to atomicity violations

– Danger: may lead to deadlocks

14
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010

CS13

Slide 14

CS13 Second mention of atomicity violations before term is defined.
Caitlin Sadowski, 7/20/2010

Example: Locking Overhead

string[] filenames = /* large list of filenames */;

public void CountLengths()

{

int[] count = new int[maxlength];

foreach (string s in filenames)

count[s.Length]++;

}

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 15

• Consider this sequential computation

• Counts how many times each filename-length occurs

Example: Locking Overhead

• Consider this parallelization:

• Instead of a speedup we get 13x slowdown

• Problem: takes too much time to acquire and
release locks

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 16

Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});

Three Main Suggestions

• Trick 1: Reduce need for locks by better

partitioning the computation

• Trick 2: Reduce size of critical sections: leads

to less contention; and may enable Trick 3

• Trick 3: Replace small critical sections with

interlockeds and volatiles

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 17

Trick 1: Partition Computation

• Recall bad parallelization of histogram
computation (13x slowdown):

• Can we reduce locking in this example?

– Yes. Partition the computation into isolated pieces.

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 18

Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});

Partitioned Histogram Computation

Parallel.For(0, numpartitions, (int p) =>

{

// create local count array

int[] localcount = new int[maxlength];

// count partition of filenames, store results in localcount

for (int i = p * filenames.Length / numpartitions;

i < (p + 1) * filenames.Length / numpartitions;

i++)

localcount[filenames[i].Length]++;

// write localcounts to count – lock held only for short time

lock (count)

{

for (int c = 0; c < maxlength; c++)

count[c] += localcount[c];

}

});

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 19

Trick 2: Reduce Size

of Contended Critical Section
• EXAMPLE: Suppose

– variable x is protected by lock a

– lock a suffers from contention

– compute() is a time-consuming computation that does not access x.

• Instead of lock (a)
{

x = computation() ;
}

• Write int result = computation();

lock (a)
{

x = result;
}

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 20

Trick 3: Interlocked/Volatile

• If your critical section contains a single

operation only, such as

– Reads a shared variable

– Writes to a shared variable

– Adds a number to a shared variable

• You can use interlocked or volatile operations

instead of locks.

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 21

Example: Use Interlocked Operation

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 22

BEFORE:

Parallel.For(0, filenames.Length, (int i) =>

{

int len = filenames[i].Length;

lock (lockarray[len])

count[len]++;

});

AFTER:

Parallel.For(0, filenames.Length, (int i) =>

{

Interlocked.Increment(ref count[filenames[i].Length]);

});

Volatile Variables and Fields

• Add “volatile” type qualifier to field or
variable

– Means every access to that field or variable is
considered a ‘volatile’ access

• If a critical section protects a single read or a
single write, we can use a volatile read or
write instead.

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 23

Example: Volatile/Interlockeds Can

Replace Locks

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 24

class MyCounter()

{

Object mylock = new Object();

int balance;

public void Deposit(int what)

{

lock(mylock)

balance = balance + what;

}

public int GetBalance()

{

lock(mylock)

return balance;

}

public void SetBalance(int val)

{

lock(mylock)

balance = val;

}

class MyCounter()

{

volatile int balance;

public void Deposit(int what)

{

Interlocked.Add(ref balance, what)

}

public int GetBalance()

{

return balance; /* volatile read */

}

public int GetBalance(int val)

{

balance = val; /* volatile write */

}

Performance of Interlocked/Volatile

• Depends on architecture

– Measure what you want to know… don’t rely on

people telling you

• That said, typically, on x86 multiprocessors:

– Interlocked is somewhat faster than locking

• Particularly fast if access goes to a cache line that is already

in X state.

– Volatile read/write is MUCH faster than locking

• Speed of volatile read/write is almost exactly same as speed

of normal read/write (gets compiled to same instruction)

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 25

Interlocked, Volatile, And Race

Detection

• Race detector will not report races between

– Interlocked access & volatile access

– volatile access & volatile access

– Interlocked access & Interlocked access

• Race detector does report data races between

– Interlocked access & normal access

– Volatile access & normal access

6/22/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 26

CASE STUDY: ANTISOCIAL ROBOTS

Part I

27
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Parallel Loop in AntiSocialRobots

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

…

}

...

if (...)

{

….

}

}

apply in

parallel to

each robot

read position of all

other robots to

figure out into which

cell this robot wants

to move

If the cell it wants to

move to is free,

move it there.

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 28

Bug 1: Data Race on Robot.Location

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

...

RoomPoint ptS = s.Location;

...

}

...

if (...)

{

...

r.Location = new RoomPoint(ptR.X, ptR.Y);

}

}

class Robot

{

...

public RoomPoint Location;

}

read position of all

other robots to

figure out into which

cell this robot wants

to move

If the cell it wants to

move to is free,

move it there.

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 29

Fix: Protect Robot.Location with Lock

• We can use the lock of

the Robot object to

protect the field

Location

class Robot

{

...

public RoomPoint Location;

}

lock s { ...

RoomPoint ptS = s.Location;

... }

lock r { ...

r.Location = new RoomPoint(ptR.X, ptR.Y);

}

�No more races

on Robot.Location

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 30

Parallel.ForEach(_robots, SimulateOneStep);

void SimulateOneStep(Robot r) {

...

foreach (Robot s in _robots)

{

}

...

if (… && null == roomCells[ptR.X, ptR.Y])

{

_roomCells[r.Location.X, r.Location.Y] = null;

_roomCells[ptR.X, ptR.Y] = r;

...

}

}

Bug 2: Data Race on roomCells

If the cell it wants to

move to is free,

move it there.

public class MainWindow

{

Robot[,] _roomCells;

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 31

Protecting roomCells w/ single lock

lock (this)

{

if (… && roomCells[ptR.X, ptR.Y] == null)

{

_roomCells[r.Location.X, r.Location.Y] = null;

_roomCells[ptR.X, ptR.Y] = r;

...

}

}

public class MainWindow

{

Robot[,] _roomCells;

}

Single lock protects the

whole array.

Destroys parallelism!

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 32

Protecting roomCells w/ fine-grained locks

lock _celllocks[newLoc.X, newLoc.Y]

{

lock _celllocks[oldLoc.X, oldLoc.Y]

{

….

_roomCells[oldLoc.X, oldLoc.Y] = null;

_roomCells[newLoc.X, newLoc.Y] = r;

...

}

Object[,] _cellLocks = new Object[ROOM_SIZE, ROOM_SIZE];

Use one lock per cell.

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 33

Bug 3: Deadlock.

Cycle in lock acquisition graph

(lock order not consistent)

lock _celllocks[newLoc.X, newLoc.Y]

{

lock _celllocks[oldLoc.X, oldLoc.Y]

{ …

}

}

r1

r2
0 1

0

1

_celllocks[0,1]

_celllocks[1,0]

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 34

Fix: Choose Consistent Lock Order

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 35

// lock level of _cellLocks[X, Y] is

// Y * ROOM_SIZE + X

object firstlock = _cellLocks[newLoc.X, newLoc.Y];

object secondlock = _cellLocks[origLoc.X, origLoc.Y];

// if necessary swap locks to ensure consistent order

if ((newLoc.Y * ROOM_SIZE + newLoc.X) >

(origLoc.Y * ROOM_SIZE + origLoc.X))

{

object tmp = firstlock;

firstlock = secondlock;

secondlock = tmp;

}

lock (firstlock)

{

lock (secondlock)

{

Problem solved… or is it?

• We’ve successfully fixed the data races in

antisocial robots using locks

• Was not as easy as it looked at first

– Final design: use 3 critical sections and

sophisticated lock acquisition order scheme

• What have we learned?

– Designing good locking is a lot of work.

– Can we solve this problem without locks?

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 36

Antisocial Robots Without Locks

• Stripe the computation!

• In each turn, perform these 9

steps in sequence:
– Move all robots in cells labeled 0 in parallel.

– Move all robots in cells labeled 1 in parallel.

– Move all robots in cells labeled 2 in parallel.

– …

– Move all robots in cells labeled 8 in parallel.

• No interference!

– Within each step, robots are too far apart to

interfere

– Across steps, there is no parallelism

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

• Label all cells with a number

between 0 and 8 as follows:

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 37

Antisocial Robots Without Locks

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

6 7 8 6 7 8 6 7 8 6

0 1 2 0 1 2 0 1 2 0

3 4 5 3 4 5 3 4 5 3

for (int stripe = 0; stripe < 9; stripe++)

Parallel.ForEach(_robots, (Robot r) =>

{

if (r.lastmoved < _frameIndex

&& (r.Location.X % 3) == (stripe % 3)

&& (r.Location.Y % 3) == (stripe / 3))

{

SimulateOneStep(r);

r.lastmoved = _frameIndex;

}

});

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 6/22/2010 38

