Data Races and Locks

Unit 2.a

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

Acknowledgments

 Authored by
— Sebastian Burckhardt, MSR Redmond

Concepts

—e Atomicity Violations
 Data Races
e Data-Race-Free Discipline

Concept °

Correctness

Immutability

e [solation
e Deadlocks

- D

Code

Concept ° LOCk(myo bj)

C

6/16/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

ATOMICITY VIOLATIONS

CS15

Atomic, Informally

A statement sequence S is atomic if
S’s effects appear to other threads as if
S executed without interruption

Atomicity Violation: An error caused by
unexpected lack of atomicity.

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

Slide 5

CSs15 Also picture?
Caitlin Sadowski, 7/20/2010

CS17

Atomicity Violation Example 1:
Naively Parallelized AntiSocialRobots

 Robots are moved in parallel
— Check if destination cell free, then move

e This sequence is not atomic!
— Cell may fill between check and move
— Schedule of events:

rl.check, r2.check, r1.move, r2.movCRASH

: —)

r2

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

rl

R

Slide 6

CS17 Can we additionally add an even more compelling slide about data race consequences? (either here or at slide 10)

For example, these are virtual robots, but what about a more dangerous example where they were objects in the real world? Could mention
Therac-25 disaster, 2003 blackout, etc.

Caitlin Sadowski, 7/14/2010

Atomicity Violation Example 2:
Bank Account

int balance = 0;

public void Deposit(int amount) ° PrOblematiC Schedule.
{ .
int b = balance; // read current balance —task 1 reads balance O
b=b+amount; //add amount
balance = b; // write balance back —task 2 reads balance O
}

— task 1 writes balance 2
public void TestParallelDeposit()

{ — task 2 writes balance 5

Parallel.Invoke(

() => Deposit(2), — Final balance: 5, not 7!
() => Deposit(5)

);

Assert.AreEqual<int>(7, balance);

}

Sometimes, it just “looks” atomic... (1)

int balance = 0;

public void DepositOne()

{ This is an atomic
balance++; operation, because it is
} internally still executed in
public void TestParallelDepositOne() three steps:
{
Parallel.lnvok.e(b = balance;
() => DepositOne(),
() => DepositOne() b=b+1,;
); balance = b;
Assert.AreEqual<int>(2, balance);
}
6/22/2010 Practical Parallel and Concurrent Programming)

DRAFT: comments to msrpcpcp@microsoft.com

Sometimes, it just “looks” atomic... (2)

struct RoonPoi nt {
public int X
public int Y,

RoonPoi nt p = new RoonPoi nt (2, 3);
r.Location = p;

& This is an atomic assignment,
because the struct is internally copied
in several steps:

r.Location.X = p.X;
r.Location.Y = p.Y;

6/22/2010 Practical P
DRAFT: comments to msrpcpcp@microsoft.com

Finding Atomicity Problems

e Atomicity Problems are often a result of
unexpected concurrency

— Programmer may not have been aware of issue

e Data races are excellent indicators of potential
atomicity problems

— All of the atomicity problems shown on previous
slides are also data races.

e First line of defense against atomicity
problems: Prevent data races.

Part 2

DATA RACES

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

11

CS5

What is a Data Race?

* Two concurrent accesses to a memory location

at

least one of which is a write.

e Example: Data race between a read and a write

int x = 1;

Pa

rallel.Invoke(

P

O = {x=2; 1},

);

e Qutcome nondeterministic or worse

<>

(O => { System.Console.writeLine(x); }

— may print 1 or 2, or arbitrarily bad things on a

6/22/2010

relaxed memory model

Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

12

Slide 12

CS5 Why is it called a data "race"? Can you also explain with a metaphor? Jaeheon has one that he likes involving multiple people trying to get or
examine cookies from the same tray.

Caitlin Sadowski, 7/20/2010

C54

Data Races and Happens-Before

e Example of a data race with two writes:

int x = 1;
Parallel.Invoke(() => { X
O =>{ x

System.Console.writeLine(x);

I
I D §-

 We visualize the ordering of memory accesses
with a happens-before graph:

There is no path between write 1 to x

(write 2 to x) and (write 3 to x), / \

thus they are concurrent, . .
thus they create a data race write 2 to x write 3 to x

(note: the read is not in a data race) \ /

read X

Slide 13

CS4 Another good example to have here would be two threads that both perform (for example) x++, and then ask the class what could happen.
Caitlin Sadowski, 7/19/2010

Quiz: Where are the data races?

Parallel.For(1,?2,
1 = {
x = a[1];

});

Parallel.For(1,?2,
1 = {
al1] = x;

});

Parallel.For(l,2,
1 = {

al[i] = a[i+1];
1

6/22/2010

Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

14

Quiz: Where are the data races?

Parallel.For(1,?2,

Parallel.For(1,?2, Parallel.For(1,?2,

i => { 1 => { T => 1
X = al[i1]; af[i1] = af[1] = a[1+1];
1) '
reads a[0] reads a[1] reads X reads X reads a[ZNads a[3]
\/ \%
writes x‘ﬂ@writes X wrltes a[0] wrltes a[1] wrltes a[1] rites a[2]

e

Race between two
writes.

6/22/2010

g

No Race between two
reads.

e

Race between a read
and a write.

Practical Parallel and Concurrent Programming 15
DRAFT: comments to msrpcpcp@microsoft.com

Spotting Reads & Writes

e Sometimes a single statement performs
multiple memory accesses

@

)

When you execute

X += Yy

there are actually two reads

and one write:

reads x
reads y
writes x

@

When you execute
af[1] = x

there are actually three
reads and one write:

reads x

reads a

reads i
writes ali]

Data Races can be hard to spot.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

e Code looks fine... at

first.

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

17

Data Races can be hard to spot.

Parallel.For(0, 10000,
i => {a[i] = new Foo();})

* Problem: we have to follow calls... even if they
look harmless at first (like a constructor).

class Foo .{ e Data
private static int counteh;//
private int unique_id; Race on
public Foo() .
{ PO, static

unique_id =counter++;) R
}
6/22/2010 Practical Parallel and Concurrent Programming 18

DRAFT: comments to msrpcpcp@microsoft.com

In this Course:
We Strictly Follow DRF Discipline

e Data-Race-Free (DRF) Discipline

means we avoid ALL data races (no such thing as
a “benign” data race).

e Already “best practice” for many, but not all
programmers.

DRF Discipline Advantages

Avoid issues with memory model
Make code more declarative
Make Race Detection Tools More Useful

Race Detectors are excellent at finding
 forgotten dependencies
e unexpected conflicts

e Atomicity problems

DATA RACE PREVENTION

Avoiding Data Races

e The three most frequent ways to avoid data
races on a variable

— Make it isolated

e variable is only ever accessed by one task

— Make it immutable

e variable is only ever read

— Make it synchronized

e Use a lock to arbitrate concurrent accesses

e Can use combination over time

6/22/2010 Practical Parallel and Concurrent Programming 22
DRAFT: comments to msrpcpcp@microsoft.com

Labeling memory accesses

e This loop is race-free because the accessed
locations are either isolated or immutable!

Parallel.For(1,1000,
1 = {
ali1] = x;
3
X:
immutable

i: isolated
a: immutable
ali]: isolated

Cool Trick: Avoid Data Races
By Encapsulation

public class Coordinate e NodataraceonX ory
{

private double x, vy; — isolated during
construction

public Coordinate(double a, (no other tasks can access

double b) _ .

{ this object yet)

X =4, — immutable once

y = b; e
1 constructor is finished
public void Getx() { (fields x,y are private, and
, return X; methods only read from
oublic void Gety() { them)

return y;
}

3

Part 4

BASIC LOCKING

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

25

Using locks

e \We can often restrict accesses to a variable and
— make it isolated

e variable is only ever accessed by one task

— make it immutable

e variable is only ever read

e But if we want to decide on-the-fly who gets to
access the variable, we

— make it synchronized

e Use a lock to arbitrate between concurrent accesses

6/22/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

26

Use lock to arbitrate accesses

 Example: No data race on variable x, because lock
guarantees mutual exclusion!

int x = 1;
Object mylock = new Object();

Parallel.Invoke(
O = { Tock(mylock)

}
I,
O =>1{ Tlock(mylock) ”
{

System.Console.writeLine(x);
}

1)

6/22/2010 Practical Parallel and Concurrent Programming 27
DRAFT: comments to msrpcpcp@microsoft.com

Basic Locking

* Any object can serve as a “lock”
— At most one task can have the lock at a time

e Task acquires/releases the lock

called “critical

C# syntax: -

Tock(myobj)
{

}

. . code to execute with lock goes here. . .

 Lock acquired when task enters critical section
— May have to wait until lock becomes available

* Lock released when task exits critical section
— When exiting either normally or due to an uncaught exception

6/22/2010 Practical Parallel and Concurrent Programming 28
DRAFT: comments to msrpcpcp@microsoft.com

Slide 28

CS6 You have lock in quotes here; can you also have motivation for this term? (perhaps on a different slide) Specifically, what is the lock metaphor?
Caitlin Sadowski, 7/20/2010

CS7

Lock Semantics

e Can not enter critical section unless lock is available

— Task blocks indefinitely if lock is currently held by a
different task

— Several tasks may be blocked & wait for the same lock to
become available

— Tasks may ‘race’ to acquire a lock.. This is not a data race,
but a ‘controlled’ race. Winner is chosen
nondeterministically.

e Reentrance is o.k.
— lock (x) {lock (x) { ... } } isequivalentto lock(x){...}
— nesting depth is tracked automatically

Slide 29

CSs7 Can you have a picture here instead of (or in addition to) the text?
Caitlin Sadowski, 7/20/2010

Using Locks to Prevent Races

 This idiom is commonly used to prevent data
races on a field x:

— Choose some lock to “protect” x

— Ensure lock held whenever x is accessed

Object mylock = new Object(); // use this lock to protect x
Parallel.Invoke(

O => { lock(mylock) { x =2; } },

QO ={w=2; 1},

QO ={2z=2; 1},

O => { Tock(mylock) {y = x; } 1},
)

6/22/2010 Practical Parallel and Concurrent Programming 30
DRAFT: comments to msrpcpcp@microsoft.com

Often: protect local fields

public class SafeCounter

e Create a private lock {

. private int value;
ObJECt to protect the private Object mylock
fiE'dS = new Object();

. public SafeCounter()
e Guarantees: no data ;
race on field , value = 0;

— isolated during _ _
public void Increment()

construction {
. Tock(mylock
— synchronized : (mylock)
afterwards value = value + 1;
}
}

}

Simple Locking Policy

* For each field that may be accessed concurrently:
— Designate a lock object (in your mind, and with comments)
— Any object will do (can use this as well)
— The same lock object can be used for many fields

* Every time you access a synchronized object:

— Make sure the lock is held during the access

 Guarantees: no data races

COMMON PROBLEMS WITH LOCKS

Locks = Easy Fix for all problems ?

e Suppose you have locked everything, and your
code is data-race-free.

e |s that the end of all trouble? No.
— Can still have correctness problems:

e Deadlocks
e Atomicity problems
— Can still have performance problems:

e Lock contention
e Locking overhead

CS10

Pitfall 1: Deadlock

Object A = new Object();
Object B = new Object();
Parallel.Invoke(

)

O => { lock(A) { lock (B) { ; } } 1},
O =>{ lock(B) { lock (A) { ; } }}

Deadlocking schedule:

6/22/2010

Tas
Tas
Tas
Tas

K 1 acquires A
K 2 acquires B
< 1 tries to acquire B, waits for Task 2 to release B

< 2 tries to acquire A, waits for Task 1 to release A

Deadlock! Nobody can make progress

Practical Parallel and Concurrent Programming 35
DRAFT: comments to msrpcpcp@microsoft.com

Slide 35

Cs10 Maybe put a more exciting/motivating example here first? I have used one with a lock per bank account, and a trasfer method that involves

locking first the "from" account and then the "to" account.
Caitlin Sadowski, 7/20/2010

Deadlock = Cycle in Wait-For Graph

e Visualize deadlocked configuration

— Each vertex represents a waiting task

— Each edge x->y represents “x is waiting for y”

Wait for B

Parallel.Invoke(

O => { lock(A) { lock (B) { ; } } 1},
O =>{ lock(B) { lock (A) { ; } }}

Wait for A
e |f there is a cycle: potential deadlock

e |f there is no cycle: safe

6/22/2010 Practical Parallel and Concurrent Programming 36
DRAFT: comments to msrpcpcp@microsoft.com

Solution: Consistent Order

e If locks are acquired in consistent order, no
cycle and thus no deadlock!

Object A = new Object();
Object B = new Object();
Object C = new Object();

Parallel.Invoke(
() => { Tock(A) { Tock (B) { ; } } },
() => { Tock(B) { Tock (OO { ; } } },
() => { Tock(A) { Tock () { ; } } }

Lock Leveling

e Simple policy to avoid deadlocks:

— Assign a “level” (some arbitrarily chosen number)
to each lock (in your mind and in comments).

— Follow policy: whenever acquiring a lock, its level
must be higher than all the levels of the locks
already held

— Effect: no cycles possible

Pitfall 2: Atomicity Violation

e Consider AntiSocial Robots Code:

Parallel.Invoke(
O => { if (IsFree(rl.Destination)) MoveRobot(rl); 1},
(O => { if (IsFree(r2.Destination)) MoveRobot(r2); }

)
Bool IsFree(Cell c) {

Tock(c) { return c.Robot == null };
}

void MoveRobot(Robot r) {
lock(r.pestination) { r.Destination.Robot = r; }

}

 Problem: robots may move into same cell!

— Because lock is released & re-acquired in between
checking & moving!

6/22/2010 Practical Parallel and Concurrent Programming 39
DRAFT: comments to msrpcpcp@microsoft.com

Next Lecture

e Typical Performance Problems
e Detailed Case Study: Antisocial Robots

http://code.msdn.microsoft.com/ParExtSamples

e ParallelExtensionsExtras.
— FastBitmap

6/16/2010 Practical Parallel and Concurrent Programming 41
DRAFT: comments to msrpcpcp@microsoft.com

Parallel Programming
with Microsoft .NET

 Appendix B (Debugging and o
Profiling Parallel Applications)

6/16/2010 Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

patterns & practices

42

