
Data Races and Locks

Unit 2.a

1Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Acknowledgments

• Authored by

– Sebastian Burckhardt, MSR Redmond

9/20/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 2

Concepts

• Atomicity Violations

• Data Races

• Data-Race-Free Discipline

• Immutability

• Isolation

• Deadlocks

• Lock(myobj)

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
36/16/2010

Code

Concept

Correctness

Concept

ATOMICITY VIOLATIONS

Part 1

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
4

Atomic, Informally

A statement sequence S is atomic if

S’s effects appear to other threads as if

S executed without interruption

Atomicity Violation: An error caused by

unexpected lack of atomicity.

5Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS15

Slide 5

CS15 Also picture?
Caitlin Sadowski, 7/20/2010

Atomicity Violation Example 1:

Naïvely Parallelized AntiSocialRobots

• Robots are moved in parallel
– Check if destination cell free, then move

• This sequence is not atomic!
– Cell may fill between check and move

– Schedule of events:

r1.check, r2.check, r1.move, r2.movCRASH

r1

r1

r2

r2

6Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS17

Slide 6

CS17 Can we additionally add an even more compelling slide about data race consequences? (either here or at slide 10)

For example, these are virtual robots, but what about a more dangerous example where they were objects in the real world? Could mention
Therac-25 disaster, 2003 blackout, etc.

Caitlin Sadowski, 7/14/2010

Atomicity Violation Example 2:

Bank Account

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
7

int balance = 0;

public void Deposit(int amount)

{

int b = balance; // read current balance

b = b + amount; // add amount

balance = b; // write balance back

}

public void TestParallelDeposit()

{

Parallel.Invoke(

() => Deposit(2),

() => Deposit(5)

);

Assert.AreEqual<int>(7, balance);

}

• Problematic schedule:

– task 1 reads balance 0

– task 2 reads balance 0

– task 1 writes balance 2

– task 2 writes balance 5

– Final balance: 5, not 7!

Sometimes, it just “looks” atomic… (1)

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
8

int balance = 0;

public void DepositOne()

{

balance++;

}

public void TestParallelDepositOne()

{

Parallel.Invoke(

() => DepositOne(),

() => DepositOne()

);

Assert.AreEqual<int>(2, balance);

}

This is not an atomic

operation, because it is

internally still executed in

three steps:

b = balance;

b = b + 1;

balance = b;

Sometimes, it just “looks” atomic… (2)

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
9

struct RoomPoint {
public int X;
public int Y;
...

}

This is not an atomic assignment,

because the struct is internally copied

in several steps:

r.Location.X = p.X;

r.Location.Y = p.Y;

RoomPoint p = new RoomPoint(2,3);
r.Location = p;

Finding Atomicity Problems

• Atomicity Problems are often a result of
unexpected concurrency

– Programmer may not have been aware of issue

• Data races are excellent indicators of potential
atomicity problems

– All of the atomicity problems shown on previous
slides are also data races.

• First line of defense against atomicity
problems: Prevent data races.

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
10

DATA RACES

Part 2

11Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

What is a Data Race?

• Two concurrent accesses to a memory location

at least one of which is a write.

• Example: Data race between a read and a write

int x = 1;

Parallel.Invoke(

() => { x = 2; },

() => { System.Console.WriteLine(x); }

);

• Outcome nondeterministic or worse

– may print 1 or 2, or arbitrarily bad things on a

relaxed memory model

writes x

reads x

12Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS5

Slide 12

CS5 Why is it called a data "race"? Can you also explain with a metaphor? Jaeheon has one that he likes involving multiple people trying to get or
examine cookies from the same tray.

Caitlin Sadowski, 7/20/2010

Data Races and Happens-Before
• Example of a data race with two writes:

int x = 1;

Parallel.Invoke(() => { x = 2; },

() => { x = 3; });

System.Console.WriteLine(x);

• We visualize the ordering of memory accesses
with a happens-before graph:
There is no path between
(write 2 to x) and (write 3 to x),
thus they are concurrent,
thus they create a data race

(note: the read is not in a data race)

write 2 to x write 3 to x

write 1 to x

read x

13Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS4

Slide 13

CS4 Another good example to have here would be two threads that both perform (for example) x++, and then ask the class what could happen.
Caitlin Sadowski, 7/19/2010

Quiz: Where are the data races?

Parallel.For(1,2,
i => {

x = a[i];
});

Parallel.For(1,2,
i => {

a[i] = x;
});

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

14Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Quiz: Where are the data races?

Parallel.For(1,2,
i => {

x = a[i];
});

reads a[0]

writes x

reads a[1]

writes xrace

Parallel.For(1,2,
i => {

a[i] = x;
});

reads x

writes a[0]

reads x

writes a[1]

Parallel.For(1,2,
i => {

a[i] = a[i+1];
});

reads a[2]

writes a[1]

reads a[3]

writes a[2]

Race between two

writes.

Race between a read

and a write.
No Race between two

reads.

15Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Spotting Reads & Writes

• Sometimes a single statement performs

multiple memory accesses

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
16

When you execute

a[i] = x

there are actually three

reads and one write:

reads x

reads a

reads i

writes a[i]

When you execute

x += y

there are actually two reads

and one write:

reads x

reads y

writes x

Data Races can be hard to spot.

• Code looks fine... at

first.

Parallel.For(0, 10000,

i => {a[i] = new Foo();})

17Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Data Races can be hard to spot.

• Problem: we have to follow calls... even if they

look harmless at first (like a constructor).

Parallel.For(0, 10000,

i => {a[i] = new Foo();})

class Foo {

private static int counter;

private int unique_id;

public Foo()

{

unique_id = counter++;

}

}
18Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

In this Course:

We Strictly Follow DRF Discipline

• Data-Race-Free (DRF) Discipline

means we avoid ALL data races (no such thing as

a “benign” data race).

• Already “best practice” for many, but not all

programmers.

DRF Discipline Advantages

• Avoid issues with memory model

• Make code more declarative

• Make Race Detection Tools More Useful

Race Detectors are excellent at finding

• forgotten dependencies

• unexpected conflicts

• Atomicity problems

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
20

DATA RACE PREVENTION

Part 3

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
21

Avoiding Data Races

• The three most frequent ways to avoid data

races on a variable

– Make it isolated

• variable is only ever accessed by one task

– Make it immutable

• variable is only ever read

– Make it synchronized

• Use a lock to arbitrate concurrent accesses

• Can use combination over time

22Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Labeling memory accesses

• This loop is race-free because the accessed

locations are either isolated or immutable!

Parallel.For(1,1000,
i => {

a[i] = x;
});

immutable

x:

immutable

i: isolated

a: immutable

a[i]: isolated
23Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Cool Trick: Avoid Data Races

By Encapsulation

public class Coordinate
{

private double x, y;

public Coordinate(double a,
double b)

{
x = a;
y = b;

}
public void GetX() {

return x;
}
public void GetY() {

return y;
}

}

• No data race on x or y
– isolated during

construction

(no other tasks can access

this object yet)

– immutable once

constructor is finished

(fields x,y are private, and

methods only read from

them)

24Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

BASIC LOCKING

Part 4

25Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Using locks

• We can often restrict accesses to a variable and

– make it isolated

• variable is only ever accessed by one task

– make it immutable

• variable is only ever read

• But if we want to decide on-the-fly who gets to

access the variable, we

– make it synchronized

• Use a lock to arbitrate between concurrent accesses

26Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Use lock to arbitrate accesses

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
27

• Example: No data race on variable x, because lock
guarantees mutual exclusion!
int x = 1;
Object mylock = new Object();

Parallel.Invoke(
() => { lock(mylock)

{
x = 2;

}
},

() => { lock(mylock)
{

System.Console.WriteLine(x);
}

});

writes x

reads x

Basic Locking
• Any object can serve as a “lock”

– At most one task can have the lock at a time

• Task acquires/releases the lock

C# syntax:

lock(myobj)
{

...code to execute with lock goes here...
}

• Lock acquired when task enters critical section
– May have to wait until lock becomes available

• Lock released when task exits critical section
– When exiting either normally or due to an uncaught exception

called “critical

section”

28Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS6

Slide 28

CS6 You have lock in quotes here; can you also have motivation for this term? (perhaps on a different slide) Specifically, what is the lock metaphor?
Caitlin Sadowski, 7/20/2010

Lock Semantics

• Can not enter critical section unless lock is available

– Task blocks indefinitely if lock is currently held by a
different task

– Several tasks may be blocked & wait for the same lock to
become available

– Tasks may ‘race’ to acquire a lock.. This is not a data race,
but a ‘controlled’ race. Winner is chosen
nondeterministically.

• Reentrance is o.k.

– lock (x) { lock (x) { … } } is equivalent to lock(x) { …}

– nesting depth is tracked automatically

29Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS7

Slide 29

CS7 Can you have a picture here instead of (or in addition to) the text?
Caitlin Sadowski, 7/20/2010

Using Locks to Prevent Races

• This idiom is commonly used to prevent data

races on a field x:

– Choose some lock to “protect” x

– Ensure lock held whenever x is accessed

Object mylock = new Object(); // use this lock to protect x

Parallel.Invoke(

() => { lock(mylock) { x = 2; } },

() => { w = 2; },

() => { z = 2; },

() => { lock(mylock) { y = x; } },

)
30Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Often: protect local fields

• Create a private lock

object to protect the

fields

• Guarantees: no data

race on field

– isolated during

construction

– synchronized

afterwards

public class SafeCounter
{

private int value;
private Object mylock

= new Object();

public SafeCounter()
{

value = 0;
}

public void Increment()
{

lock(mylock)
{

value = value + 1;
}

}
}

31Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Simple Locking Policy

• For each field that may be accessed concurrently:

– Designate a lock object (in your mind, and with comments)

– Any object will do (can use this as well)

– The same lock object can be used for many fields

• Every time you access a synchronized object:

– Make sure the lock is held during the access

• Guarantees: no data races

32Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

COMMON PROBLEMS WITH LOCKS

Part 5

33Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Locks = Easy Fix for all problems ?

• Suppose you have locked everything, and your

code is data-race-free.

• Is that the end of all trouble? No.

– Can still have correctness problems:

• Deadlocks

• Atomicity problems

– Can still have performance problems:

• Lock contention

• Locking overhead

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
34

Pitfall 1: Deadlock

Deadlocking schedule:

• Task 1 acquires A

• Task 2 acquires B

• Task 1 tries to acquire B, waits for Task 2 to release B

• Task 2 tries to acquire A, waits for Task 1 to release A

• Deadlock! Nobody can make progress

Object A = new Object();

Object B = new Object();

Parallel.Invoke(

() => { lock(A) { lock (B) { ; } } },

() => { lock(B) { lock (A) { ; } } },

)

35Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

CS10

Slide 35

CS10 Maybe put a more exciting/motivating example here first? I have used one with a lock per bank account, and a trasfer method that involves
locking first the "from" account and then the "to" account.
Caitlin Sadowski, 7/20/2010

Deadlock = Cycle in Wait-For Graph

• Visualize deadlocked configuration

– Each vertex represents a waiting task

– Each edge x->y represents “x is waiting for y”

• If there is a cycle: potential deadlock

• If there is no cycle: safe

Parallel.Invoke(

() => { lock(A) { lock (B) { ; } } },

() => { lock(B) { lock (A) { ; } } },

)

task1 task2

36Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Wait for B

Wait for A

Solution: Consistent Order

• If locks are acquired in consistent order, no

cycle and thus no deadlock!

6/22/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
37

Object A = new Object();

Object B = new Object();

Object C = new Object();

Parallel.Invoke(

() => { lock(A) { lock (B) { ; } } },

() => { lock(B) { lock (C) { ; } } },

() => { lock(A) { lock (C) { ; } } },

)

Lock Leveling

• Simple policy to avoid deadlocks:

– Assign a “level” (some arbitrarily chosen number)

to each lock (in your mind and in comments).

– Follow policy: whenever acquiring a lock, its level

must be higher than all the levels of the locks

already held

– Effect: no cycles possible

38Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Pitfall 2: Atomicity Violation

• Consider AntiSocial Robots Code:

• Problem: robots may move into same cell!

– Because lock is released & re-acquired in between
checking & moving!

Parallel.Invoke(

() => { if (IsFree(r1.Destination)) MoveRobot(r1); },

() => { if (IsFree(r2.Destination)) MoveRobot(r2); }

)

Bool IsFree(Cell c) {

lock(c) { return c.Robot == null };

}

Void MoveRobot(Robot r) {

lock(r.Destination) { r.Destination.Robot = r; }

}

39Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

Next Lecture

• Typical Performance Problems

• Detailed Case Study: Antisocial Robots

40Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6/22/2010

http://code.msdn.microsoft.com/ParExtSamples

• ParallelExtensionsExtras.

– FastBitmap

6/16/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
41

Parallel Programming

with Microsoft .NET

• Appendix B (Debugging and

Profiling Parallel Applications)

6/16/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
42

