
Imperative Data Parallelism 

(Correctness)

Unit 1.b

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
16/16/2010



Acknowledgments

• Authored by

– Thomas Ball, MSR Redmond

9/4/2010

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 2



Concepts

• Parallel.Invoke

• Parallel.ForEach

• Schedules and determinism

• Assertions/Invariants

• Unit Testing

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
36/16/2010

Code

Concept

Correctness

Concept



Parallel.Invoke

int x = 0;

Parallel.Invoke (
() => { x=1; }, 

() => { x=2; }

);

Console.WriteLine (“x={0}”, x);

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
46/16/2010

Alpaca

ProjectParallelSamples.cs

static void Invoke(params Action[] actions);

tjb2



Slide 4

tjb2 Maybe motivate with a prior slide with a more realistic example where Parallel.For is not quite what we want. i.e. what if we have two specific 
things we want to do in parallel?

Then have this simple example where stuff breaks.
Tom Ball, 8/14/2010



Parallel DAG and

Happens-before Edges

x=0

x=1

WriteLine(x)

x=2

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
56/16/2010



Schedule, Informally

A topological sort (serialization) of the nodes 

in a parallel DAG

-

A sequential ordering of the nodes that

respects the happens-before edges

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
66/16/2010



Different schedules, different outputs

x=0

x=1

WriteLine(x)

x=2

x=0

x=2

WriteLine(x)

x=1

x = 2 x = 1Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
76/16/2010



Determinism

• For the same initial state, 

observe the same final state, 

regardless of the schedule

• Determinism desirable for most data-

parallel problems

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
86/16/2010

CS9



Slide 8

CS9 How is determinism reflected on a happens-before graph?
Caitlin Sadowski, 7/8/2010



Parallel Ray Tracing: 

Deterministic

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

for (int x = 0; x < screenWidth; x++) 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
96/16/2010



Unit Testing

• The goal of unit testing is to isolate each part 
of the program and show that the individual 
parts are correct

• A unit test is

– a closed program that 

– sets up conditions to run

– a program unit and

– check the results 

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
6/22/2010 10



System vs. Unit Testing

• System Testing

– Test entire application

– Needed to find integration errors

– Does not put much stress on individual components

• Unit Testing

– Better coverage, but more work

– Necessity for libraries and frameworks

– Good idea for tricky parallel/concurrent components

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
6/22/2010 11



Checking Determinism

• How can we test the correctness of the parallel Ray 

Trace application?

• Create unit test to compare

– the parallel version 

– the sequential version

• Should we be satisfied with such tests?

• Do unit tests work well for parallel programs?

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
126/16/2010

Alpaca

ProjectRayTracerTest.cs



IEnumerable and Parallel.ForEach

• Parallel.ForEach is not limited to integer 

ranges and arrays!

• Generic enumerations

– IEnumerable <T>

– Lists, sets, maps, dictionaries, …

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
136/16/2010



Parallel.ForEach

public static ParallelLoopResult

ForEach<TSource>(

IEnumerable<TSource> source, 

Action<TSource> body

);

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
146/16/2010

CS12



Slide 14

CS12 Could we add a graphic?
Caitlin Sadowski, 7/8/2010



Speedup Demo: Antisocial Robots

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
156/16/2010

fps

= 

frames

per

second



Speedup: Over 3x on a 4-core! 

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
166/16/2010



The Difference in the Code? 

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
176/16/2010

public void SequentialStep()

{

foreach (Robot robot in _robots)

SimulateOneStep(robot);

}

public void ParallelStep()

{

Parallel.ForEach(_robots, r =>

SimulateOneStep(r));

}

void PerformSimulationStep()

{

if (naiveparallel.IsChecked.Value)

{

_robotSim.ParallelStep();

}

else

{

_robotSim.SequentialStep();

}

. . .



Key Data Structures

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
18

struct RoomPoint {

public int X;

public int Y;

}

class Robot {

public RoomPoint Location;

}

List< Robot> _robots;
Robot[][] _roomCells;

r1

r2

_roomCells;

(0,0)

6/16/2010



SimulateOneStep (Robot r1)

• Determine new cell for r1

• Move r1 to new cell, if not already 
occupied

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
19

r1

r2

r1

r2
6/16/2010



Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
20

0 1 2 3 4

0

r r r r
1

r r1 r2 r
2

r r r r r

6/16/2010

0 1 2 3 4

0

r r r1 r r
1

r r2 r
2

r r r r r

0 1 2 3 4

0

r r r2 r r
1

r r1 r
2

r r r r r

PerformSimulationStep PerformSimulationStep



Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
21

0 1 2 3 4

0

r r r r
1

r r1 r2 r
2

r r r r r

6/16/2010

0 1 2 3 4

0

r r r2 r r
1

r r
2

r r r r r



Pigeonhole Principle

• “Two robots can’t occupy the same cell”

• If it is true before execution of

PerformSimulationStep

then it should be true afterward, regardless of

sequential/parallel implementation

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
226/16/2010

foreach (var in _robots)
Debug.Assert(_roomCells[r.Location.X,r.Location.Y] == r,

“Can’t have two robots in the same cell!”);



Assert Statement

• Assert(e)

– e a Boolean expression (state predicate)

– e should always evaluate true when statement 

executes; otherwise program has an error

• Helpful assertions have messages:

– Assert(balance>=0, 

“account balance should be non-negative”)

6/16/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
23



Invariant

• State predicate e is invariant to program 
fragment S provided that

– If predicate e is true before execution of S then

– Then predicate e is true after execution of S 

• So, 

– State predicate

• “Two robots can’t occupy the same cell”

– Is invariant to

• PerformSimulationStep

6/16/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
24



1. Antisocial Robots has a Bug

2. It’s Hard to Expose Concurrency Bugs!

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
256/16/2010

AntisocialRobots.csproj



6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
26



Run Alpaca [UnitTestMethod] 

to get more reliable 

reproduction of bug

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
276/16/2010

Alpaca

ProjectRobotSimulationInterferenceTest.cs



High-level Problem

• SimulateOneStep(r1) and SimulateOneStep(r2) 

interfere with one another when

– r1 wants to move to cell (X,Y), and

– r2 wants to move to cell (X,Y)

• Sequential version: invariant is maintained

• Parallel version: invariant breaks!

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
286/16/2010



Two Bugs in Three Lines:

Updating Robot r’s Location

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
29

SimulateOneStep(Robot r) {

RoomPoint ptR;
// compute new location of Robot r into ptR
... 

// update robot location
if (((ptR.X != r.Location.X) || (ptR.Y != r.Location.Y))
&&  (_roomCells[ptR.X, ptR.Y] == null ))
{

_roomCells[r.Location.X, r.Location.Y] = null ;
_roomCells[ptR.X, ptR.Y] = r;
r.Location = new RoomPoint (ptR.X, ptR.Y);

}

6/16/2010



Order of Statements

Leading to 

Invariant Failure

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
30

if (_roomCells[2,0] == null )
_roomCells[1,1] = null ;

_roomCells[2,0] = r1;
r1.Location = (2,0);

0 1 2 3 4

0

r r r r
1

r r1 r2 r
2

r r r r r

if (_roomCells[2,0] == null )
_roomCells[3,1] = null ;

_roomCells[2,0] = r2;
r2.Location = (2,0); 

SimulateOneStep(r1) SimulateOneStep(r2)

6/16/2010

Time



Order of Statements

Leading to 

Invariant Failure

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
31

if (_roomCells[2,0] == null )
_roomCells[1,1] = null ;

_roomCells[2,0] = r1;
r1.Location = (2,0);

0 1 2 3 4

0

r r r2 r r
1

r r
2

r r r r r

if (_roomCells[2,0] == null )
_roomCells[3,1] = null ;

_roomCells[2,0] = r2;
r2.Location = (2,0); 

SimulateOneStep(r1) SimulateOneStep(r2)

6/16/2010



Question: What is the Second Bug?

• Think about the struct RoomPoint

• Come up with a scenario

– Ordering of statements leading to invariant 

violation

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
326/16/2010



Parallel.For/ForEach and Correctness

• No interference between delegates on 

different loop iterations

• Avoid Writing to Shared Memory Locations

– Avoid Calls to Non-Thread-Safe Methods

• No interference: implies determinism?

• Only the GUI thread can access GUI state

– Don’t execute Parallel.For on the GUI thread

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
336/16/2010



Parallel Programming 

with Microsoft .NET 

• Chapter 2 (Parallel Loops) 

Parallel.For/ForEach

• Appendix B (Debugging and 

Profiling Parallel Applications)

6/16/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
34


