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Concepts

• Parallel.Invoke

• Parallel.ForEach

• Schedules and determinism

• Assertions/Invariants

• Unit Testing
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Parallel.Invoke

int x = 0;

Parallel.Invoke (
() => { x=1; }, 

() => { x=2; }

);

Console.WriteLine (“x={0}”, x);
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Alpaca

ProjectParallelSamples.cs

static void Invoke(params Action[] actions);

tjb2



Slide 4

tjb2 Maybe motivate with a prior slide with a more realistic example where Parallel.For is not quite what we want. i.e. what if we have two specific 
things we want to do in parallel?

Then have this simple example where stuff breaks.
Tom Ball, 8/14/2010



Parallel DAG and

Happens-before Edges

x=0

x=1

WriteLine(x)

x=2
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Schedule, Informally

A topological sort (serialization) of the nodes 

in a parallel DAG

-

A sequential ordering of the nodes that

respects the happens-before edges
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Different schedules, different outputs

x=0

x=1

WriteLine(x)

x=2

x=0

x=2

WriteLine(x)

x=1
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Determinism

• For the same initial state, 

observe the same final state, 

regardless of the schedule

• Determinism desirable for most data-

parallel problems
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Slide 8

CS9 How is determinism reflected on a happens-before graph?
Caitlin Sadowski, 7/8/2010



Parallel Ray Tracing: 

Deterministic

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

for (int x = 0; x < screenWidth; x++) 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}
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Unit Testing

• The goal of unit testing is to isolate each part 
of the program and show that the individual 
parts are correct

• A unit test is

– a closed program that 

– sets up conditions to run

– a program unit and

– check the results 
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System vs. Unit Testing

• System Testing

– Test entire application

– Needed to find integration errors

– Does not put much stress on individual components

• Unit Testing

– Better coverage, but more work

– Necessity for libraries and frameworks

– Good idea for tricky parallel/concurrent components
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Checking Determinism

• How can we test the correctness of the parallel Ray 

Trace application?

• Create unit test to compare

– the parallel version 

– the sequential version

• Should we be satisfied with such tests?

• Do unit tests work well for parallel programs?
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ProjectRayTracerTest.cs



IEnumerable and Parallel.ForEach

• Parallel.ForEach is not limited to integer 

ranges and arrays!

• Generic enumerations

– IEnumerable <T>

– Lists, sets, maps, dictionaries, …
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Parallel.ForEach

public static ParallelLoopResult

ForEach<TSource>(

IEnumerable<TSource> source, 

Action<TSource> body

);
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Slide 14

CS12 Could we add a graphic?
Caitlin Sadowski, 7/8/2010



Speedup Demo: Antisocial Robots
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Speedup: Over 3x on a 4-core! 
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The Difference in the Code? 
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public void SequentialStep()

{

foreach (Robot robot in _robots)

SimulateOneStep(robot);

}

public void ParallelStep()

{

Parallel.ForEach(_robots, r =>

SimulateOneStep(r));

}

void PerformSimulationStep()

{

if (naiveparallel.IsChecked.Value)

{

_robotSim.ParallelStep();

}

else

{

_robotSim.SequentialStep();

}

. . .



Key Data Structures
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struct RoomPoint {

public int X;

public int Y;

}

class Robot {

public RoomPoint Location;

}

List< Robot> _robots;
Robot[][] _roomCells;

r1

r2

_roomCells;

(0,0)

6/16/2010



SimulateOneStep (Robot r1)

• Determine new cell for r1

• Move r1 to new cell, if not already 
occupied
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r1

r2

r1

r2
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Pigeonhole Principle

• “Two robots can’t occupy the same cell”

• If it is true before execution of

PerformSimulationStep

then it should be true afterward, regardless of

sequential/parallel implementation
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foreach (var in _robots)
Debug.Assert(_roomCells[r.Location.X,r.Location.Y] == r,

“Can’t have two robots in the same cell!”);



Assert Statement

• Assert(e)

– e a Boolean expression (state predicate)

– e should always evaluate true when statement 

executes; otherwise program has an error

• Helpful assertions have messages:

– Assert(balance>=0, 

“account balance should be non-negative”)

6/16/2010
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Invariant

• State predicate e is invariant to program 
fragment S provided that

– If predicate e is true before execution of S then

– Then predicate e is true after execution of S 

• So, 

– State predicate

• “Two robots can’t occupy the same cell”

– Is invariant to

• PerformSimulationStep

6/16/2010
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1. Antisocial Robots has a Bug

2. It’s Hard to Expose Concurrency Bugs!
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AntisocialRobots.csproj
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Run Alpaca [UnitTestMethod] 

to get more reliable 

reproduction of bug
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Alpaca

ProjectRobotSimulationInterferenceTest.cs



High-level Problem

• SimulateOneStep(r1) and SimulateOneStep(r2) 

interfere with one another when

– r1 wants to move to cell (X,Y), and

– r2 wants to move to cell (X,Y)

• Sequential version: invariant is maintained

• Parallel version: invariant breaks!
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Two Bugs in Three Lines:

Updating Robot r’s Location
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SimulateOneStep(Robot r) {

RoomPoint ptR;
// compute new location of Robot r into ptR
... 

// update robot location
if (((ptR.X != r.Location.X) || (ptR.Y != r.Location.Y))
&&  (_roomCells[ptR.X, ptR.Y] == null ))
{

_roomCells[r.Location.X, r.Location.Y] = null ;
_roomCells[ptR.X, ptR.Y] = r;
r.Location = new RoomPoint (ptR.X, ptR.Y);

}

6/16/2010



Order of Statements

Leading to 

Invariant Failure
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if (_roomCells[2,0] == null )
_roomCells[1,1] = null ;

_roomCells[2,0] = r1;
r1.Location = (2,0);

0 1 2 3 4

0

r r r r
1

r r1 r2 r
2

r r r r r

if (_roomCells[2,0] == null )
_roomCells[3,1] = null ;

_roomCells[2,0] = r2;
r2.Location = (2,0); 

SimulateOneStep(r1) SimulateOneStep(r2)

6/16/2010
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Order of Statements

Leading to 

Invariant Failure
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if (_roomCells[2,0] == null )
_roomCells[1,1] = null ;

_roomCells[2,0] = r1;
r1.Location = (2,0);

0 1 2 3 4
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if (_roomCells[2,0] == null )
_roomCells[3,1] = null ;

_roomCells[2,0] = r2;
r2.Location = (2,0); 

SimulateOneStep(r1) SimulateOneStep(r2)
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Question: What is the Second Bug?

• Think about the struct RoomPoint

• Come up with a scenario

– Ordering of statements leading to invariant 

violation
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Parallel.For/ForEach and Correctness

• No interference between delegates on 

different loop iterations

• Avoid Writing to Shared Memory Locations

– Avoid Calls to Non-Thread-Safe Methods

• No interference: implies determinism?

• Only the GUI thread can access GUI state

– Don’t execute Parallel.For on the GUI thread
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Parallel Programming 

with Microsoft .NET 

• Chapter 2 (Parallel Loops) 

Parallel.For/ForEach

• Appendix B (Debugging and 

Profiling Parallel Applications)

6/16/2010
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