
Introduction to Alpaca and

MCUT

Alpaca: A lovely parallel and
concurrency analyzer

MCUT: Microsoft Concurrency Unit
Testing Framework

Unit Testing

• What is a Unit Test?

Create an Alpaca/MCUT Project

1. Open Visual Studio 2010

2. Create a new C# Class Library project

– Example name: AlpacaProject

3. Add a project reference to MCUT Framework:

– Microsoft.Concurrency.UnitTestingFramework

– This is installed with Alpaca and should be visible

in the Add Reference dialog box in VS

Create a test class

• A test class is just any class that contains test

methods

• Requirements:

– Public

– Non-static

– Public, empty constructor

• In C#, if no explicit constructor is specified, an empty

ctor is automatically generated for the class.

Create your first Unit Test

1. Import the namespace:
using Microsoft.Concurrency.TestTools.UnitTesting;

2. Create a test method

– Requirements: public, non-static

– Return value is ignored

– For this example, don’t use any arguments

3. Mark the method as a unit test:
[UnitTestMethod]

4. Add test code body

Hello World Test Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Microsoft.Concurrency.TestTools.UnitTesting;

namespace AlpacaProject1
{

public class Class1
{

[UnitTestMethod]
public void HelloWorldTest()
{

Console.WriteLine("Hello world!");
Console.Error.WriteLine("Oops, this is an error.");

}
}

}

Build

Prepare to use Alpaca

• Why?

– Alpaca creates separate task folders for each test

run it performs

– Can clutter up the folder alpaca is running in

To Prepare:

1. Create a temporary folder.

E.g. alpaca.tmp

2. Run alpaca from this folder

Open Alpaca

1. Open a command prompt and CD into your

temporary folder

a) Shift+right-click on/in your temporary folder

b) Click “Open command window here”

2. Open alpaca by typing alpaca

The Alpaca Interface

Test Explorer Tree Task List Test Result Messages

Chess Test Results

Standard Output

Standard Error

Entity xml, Task arguments, Test Case xml

Open Test Assembly

1. Session -> Open Tests Container

2. Navigate to the dll that you built for your alpaca
project

Note: If you don’t see your assembly make sure it’s been built first.

Test Assembly Tree

• Test Assembly Container

• Test Class Name

• Test Method

• Test Type(s)

– There may be more than one

type of test specified for a test

method

Run a Test

1. Right-click on the test method or the “Unit

Test” test type node

2. Select the “Run” or “Run Unit Test” menu

option

A task will be created in the

tasks list.

Test Results and Output

Test runs added as children

One task per test case run
Categorized by result type

Test Assertions

• Assert class

– Static class containing methods that will assert

conditions.

• Examples
Assert.IsTrue(a != null);

Assert.IsNull(a);

Assert.AreEqual(10, n);

• When an assertion fails, an exception is

thrown and Alpaca is notified

SortArrayTest

[UnitTestMethod]
public void SortArrayTest()
{

int n = 1000;
Random rand = new Random();

// Create array of random integers
int[] a = new int[n];
for (int i = 0; i < n; i++)

a[i] = rand.Next();

// Sort the array
SortArray(a);

// Verify Correctness
for (int i = 1; i < n; i++)

Assert.IsTrue(a[i] >= a[i - 1]
, "Element {0} is not sorted correctly", i);

}

private void SortArray(int[] a)

{

//Array.Sort(a);

}

Refresh Assembly

• After adding the new test method, rebuild and

switch over to Alpaca

• Alpaca watches your test assembly for changes

• To disable the notification:

Options -> Uncheck “Confirm Auto Refresh”

Run Failing Test

• Run the SortArrayTest

View Exception Stack Trace

• Currently, no way to debug into a unit test in

VS from Alpaca �

• But we can see the exception with it’s stack

trace:

1. Click/select on the result node in the results tree

2. View the “Arguments” tab to see the xml

3. Inside the xml is an error element that tells you

the exceptionType and stackTrace

Fix the Bug

• Uncomment the SortArray function’s body
private void SortArray(int[] a)

{

Array.Sort(a);

}

• Rebuild

• Rerun the test

• Test passes

Performance Tests

• Measure time taken to perform a certain block

of code

• Intervals displayed in a graph

• TaskMeter

– Provides Start/Stop methods for specifying the

block of code to time

Create a Performance Test

1. Create TaskMeter instance(s)
TaskMeter initMeter = new TaskMeter("Initialize Data");

TaskMeter sortingMeter = new TaskMeter("Sort");

TaskMeter verificationMeter = new TaskMeter("Verify");

2. Mark our SortArrayTest method to also be a

Performance test: [PerformanceTestMethod]

3. Add meter Start/Stop calls around blocks of

code you wish to time

TaskMeter initMeter = new TaskMeter("Initialize Data");

TaskMeter sortingMeter = new TaskMeter("Sort");

TaskMeter verificationMeter = new TaskMeter("Verify");

[UnitTestMethod]

[PerformanceTestMethod]

public void SortArrayTest()

{

int n = 1000;

Random rand = new Random();

// Create array of random integers

initMeter.Start();

int[] a = new int[n];

for (int i = 0; i < n; i++)

a[i] = rand.Next();

initMeter.End();

// Sort the array

sortingMeter.Start();

SortArray(a);

sortingMeter.End();

// Verify Correctness

verificationMeter.Start();

try

{

for (int i = 1; i < n; i++)

Assert.IsTrue(a[i] >= a[i - 1]

, "Element {0} is not sorted correctly", i);

}

finally

{

verificationMeter.End();

}

}

SortArrayTest

Run Performance Test Interactively

• In Alpaca, you will now see another node

under the SortArrayTest() node called

“Performance Test”

• Right-click and click “Run Performance Test

Interactively”

• In the window that gets displayed, click the Go

button.

TaskoMeter

Repetitions to execute the test method

Repetitions w/o timings (done first)

Zoom Bar

One row per task meter

Interval between a Start and Stop

relative to other meters

Repetitions and Warmups

• You can specify…

– Default # of time to run the test w/o timing

• Has the effect of warming up the cache etc.

– Default # of times to repeat the test and take

timings

[PerformanceTestMethod(Repetitions=5, WarmupRepetitions=2)]

public void SortArrayTest()

…

Note about TaskoMeter

• When TaskoMeter runs, it loads the test assembly (and
any of its dependencies) into memory. So while it’s
open the OS keeps it from being modified.

• Therefore, you will not be able to rebuild those
assemblies unless the TaskoMeter window that has it
open has been closed

• When Alpaca launches a performance test, it does so
by launching a new process for every test

• This helps prevent Alpaca from loading the assembly in
its own app domain so you won’t have to close Alpaca
to rebuild an assembly, just the TaskoMeter windows

Test Arguments

• Run a test with a fixed set of arguments

• Specify using: [TestArgs(…)]

– Number of values must match number of parameters
for the method

– Can declare more than one instance of the attribute;
each represents the arguments for a single run of the
test.

[TestArgs(100)]
[TestArgs(1000)]
public void SortArrayTest(int n)
{

Random rand = new Random();
…

TestArgs Limitations

• Only values that the complier can create at

compile-time may be used

• Must be able to be converted to a string and

then back to the parameter’s type

TestArgs

Arg value displayed

See args specified in the

test case’s xml

Test run for 5 repetitions

One test run per TestArgs specified

Concurrency Unit Testing

• Different from regular unit testing

• Want to expose concurrency bugs

• May use various tools to analyze or instrument
code to reason about correctness

• Often must be a limited set of execution code to
speed up tests

• The nature of concurrency testing is different
enough from normal unit testing that one
generally doesn’t mark a test method as a unit
test and a concurrency unit test method

Preemption Scheduling

• Preemption:

The interruption of a running task with the intent to
execute another task and return to the interrupted task
at a later time.

• By controlling the scheduling of preemptions you
can explore all possible schedules

• Certain optimizations can also be done to limit
the exploration space.

• Alpaca uses the MS ChessTool to run schedule
and data race tests.

Schedule Tests

• Alpaca runs MChess in the background to

instrument and explore preemption schedules

• Can be used to find common concurrency

bugs

– Deadlocks

Create a Schedule Test

• Create test method that
simulates a deadlock

• Mark the method as a
schedule test using the
attribute
[ScheduleTestMethod]

• Build and refresh
assembly in Alpaca

• Run the test in Alpaca by
right-clicking and selecting
“Run Schedule Test”

[ScheduleTestMethod]
public void SimpleDeadlock()
{

object syncObj1 = new object();
object syncObj2 = new object();

Parallel.Invoke(
() => {

lock (syncObj1)
lock (syncObj2)

{ }
},
() => {

lock (syncObj2)
lock (syncObj1)

{ }
});

}

Schedule Test Run

Result = Deadlock

Mchess is used to run the test
Chess results:

notifications, warnings,

errors are displayed here.

MChess can detect

multiple errors for a given

run.

Chess Error stream:

Displays progress as

chess explores

schedules.

Finding the Deadlock

• Alpaca also exposes features of MChess

– Run MChess again with the same schedule that

found an error with Tracing to enable more

diagnostics

– Can view the operations that occurred in the

schedule in the code using Concurrency Explorer

Run Deadlocked Schedule with Tracing

• In the “Task Results” tab, right click the
“E|Deadlock” result item from the Chess Results
grid

– This is not the same as the one from the task list

• Click “Repro Deadlock with Tracing”

– Note other options here for debugging ;-)

• The test will run with MChess again and return
with another Deadlock result. Only this time just
the schedule that produced the deadlock will be
instrumented.

Open Schedule in Concurrency

Explorer

• Right-click the new E|Deadlock row in the run

that had tracing enabled

• Select “View in Concurrency Explorer”

Only one schedule was run

View Deadlock in Concurrency

Explorer
• When opening the Concurrency Explorer (CE)

from a deadlocked schedule it automatically
opens the “All Events” window.

• By clicking on the orange “Preemption” item
you see where the first thread preempts just
before obtaining the 2nd lock.

• Clicking next on the 2nd thread’s last instruction
(text in orange) you see the 2nd thread
preempted just before optaining it’s 2nd lock.

• Both threads are waiting on the lock for which
the other thread has obtained.

Concurrency Explorer
Clicking the Preemption row -> The line where the preemption occurred is highlighted

Clicking the last event -> The line where the deadlock occurred is highlighted

Stack trace of last

selected event for the

thread

Fix the Deadlock

• Fix the deadlock by swapping the order of lock

acquisition for one of the threads.

• Run the test again.

• The test should now pass.

Data Race Tests

• Data Race: When two concurrent threads access
the same memory location and one of the
accesses is a write

• Notice the warning given by Mchess when we ran
the previous schedule test:
WARNING: Race Detection Disabled. Races May Hide Bugs.

• When data race detection is enabled Mchess
verifies that preempted threads don’t cause a
data race

• Same number of schedules explored as a regular
Schedule Test

Create a Test With a Data Race

• Create a basic data race test where two

threads read/write to the same shared

variable

• Mark the test with the [DataRaceTestMethod]

attribute

• Run the test in Alpaca

[DataRaceTestMethod]

public void SimpleDataRace()

{

int cnt = 0;

Parallel.Invoke(

() => cnt++,

() => cnt++

);

Assert.AreEqual(2, cnt);

}

View The Data Race

• Rerun the erroring schedule by right-clicking

on [one of] the data race Chess errors and

clicking “Repro Race Rx with Tracing”

• After this test finishes, right-click the R1 row

and click “View Race with Concurrency

Explorer”

Data Race in Concurrency Explorer
Each color represents a different thread’s operations

Thread 1: Write

Thread 2: Read

Chess Tests

• The ScheduleTestMethod and DataRaceTestMethod
attributes are just abstractions of the attributes available to
create a test that runs using MChess.

• Namespace:
Microsoft.Concurrency.TestTools.UnitTesting.Chess

• There is some documentation already via intellisense in
Visual Studio.

• Note an MChess test is for managed code only. Thus the
attribute is simply ChessTestMethod since the ‘M’ is
implied.

• We’ll just provide a pretty complex example of an MChess
test.

MChess Test Sample
1:[ChessTestMethod()]
2:[ChessTestContext(
3: PreemptAllAccesses = true
4: , ExtraCommandLineArgs = new[]{
5: "/dpt:AntisocialRobots.RobotSimulationBase"
6: ,"/dpt:AlpacaProject.RobotSimulationFixes"
7: })]
8:public void NaiveParallel_ScheduleTest()

Line 1: Simply marks the method as an MChess test method.

Line 2: Specifies a context under which to run the test. There can be multiple

contexts specified for a test. When the test is run, Alpaca executes one run per

cross product of context and specified TestArgs (if any). If no name is specified,

then it’s the default context. If more than one contexts are specified, they must

have unique names.

MChess Test Sample (cont.)

• Line 3: This particular test doesn’t make use of any
threading/locking primitives and thus there would be no
preemptions. By specifying this property, MChess will
explore schedules where it will preempt on all memory
accesses. The problem with this (as you may guess) is that
the number of schedules explored is huge.

• Line 4: While the most common options are implemented
via attribute properties sometimes you need to specify an
option on the command-line yourself. This array of strings
(one string per arg) allows you to do just that.

• Lines 5-6: The /dp[tmn] command line option tells MChess
“Don’t Preempt [Type, Method, Namespace]” This helps to
minimize the schedule exploration space for this test so it
takes much less time to run.

Other Features

• [ExpectedException(typeof(…Exception))]

– Asserts that the method throws an exception of the
specified type

• [ExpectedResult(TestResultType.AssertFailure)]

– Indicates that for a test to pass in Alpaca, the test
should produce the specified result

– E.g. When you expect a test to produce a deadlock but
don’t want Alpaca to report one

• You can right-click a chess error and Debug that
schedule
– Allows you to attach a debugger to the process

Regression Testing

• Another layer after the ExpectedResult attribute that is
only run when regression test assertions are enabled

• Allows a test to pass regression testing if the result is
any of those specified

• Ignored by Alpaca

• Enabled for the following mcut command:

>mcut runAllTests [testAssembly]

This runs all tests and prints results to the Console.

/// This test may or may not find the deadlock since we aren't using MChess
[UnitTestMethod]

[RegressionTestExpectedResult(TestResultType.Passed, TestResultType.DeadLock)]

public void MyLoadTest()

