EMBEDDED SYSTEMS AND KINETIC ART: DRAWING MACHINES

CS5789: Erik Brunvand School of Computing

Art3490/4490: Paul Stout
Department of Art and Art History

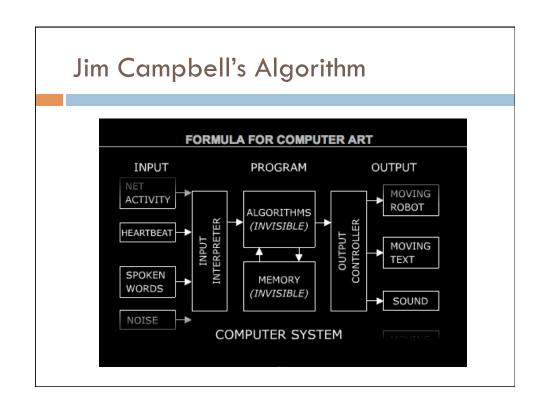
Logistics

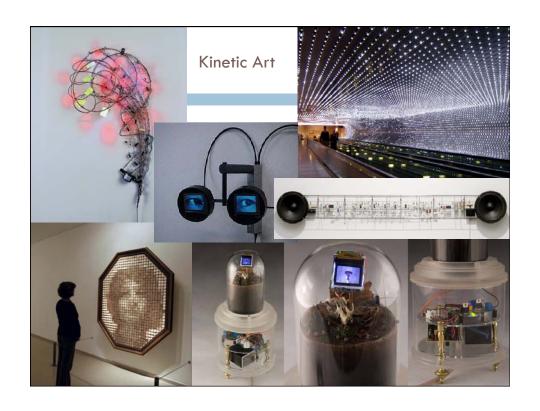
- □ Class meets T-Th 3:40-5:00pm
- □ We'll start meeting in Art 169
 - At some point we may also meet in MEB 3133 (Merrill Engineering Building) on the north side of campus
- □ Web page is <u>www.eng.utah.edu/~cs5789</u>

Kinetic Art

- Kinetic art contains moving parts
 - Depends on motion, sound, or light for its effect
- □ Kinetic aspect often controlled by microcontrollers
 - Using motors, actuators, transducers, sensors
- □ The artwork can react to its environment
 - □ Distinct from "computer art"
 - The computer is usually behind the scenes

Embedded Systems


- Computer systems that are embedded into a complete device
 - Often small or special purpose computers/ microprocessors
 - Designed to perform one or a few dedicated functions
 - Often reactive to environmental sensors
 - Often designed to directly control output devices


Drawing Machines

- □ Kinetic art that makes drawings
 - Drawing is mark-making
 - Mark-making can be interpreted in many ways...
 - We'll explore lots of options

Embedded Systems and Kinetic Art

- □ Cross-college collaborative course
 - Brings Art students and Computer Science and Engineering (CSE) students together
 - Design and build embedded-system-controlled kinetic art
 - Drawing Machines are the focus this spring
 - Goal is that both groups of students benefit
- □ Fundamental nature of **Design**
 - Engineering design vs. creative design?

How Will the Class Work?

- □ Good question! It's an ongoing experiment from both sides...
 - Start with some background study
 - Hands-on simple drawing machines to warm up
 - Some hands-on labs with the microcontroller
 - Build a toolkit of input sensors, output transducers and computer code to interface with them
 - Teams will eventually design a project (or two?) together
 - □ Class critiques, refinement, final build
 - Exhibit of the results in Spring

How Will the Class Work?

- Also: everybody should keep a sketchbook
 - At least a page a day
 - Not every page needs to be a masterpiece...
 - Design ideas, inspiration, thoughts, etc.
 - Look at Carol Sogard's "Sketch School" for inspiration

http://www.flickr.com/photos/ carolsogard/sets/ 72157627069987019/

How Will the Class Work?

- □ Also occasional readings
 - One-page responses, and class discussions
 - Readings will be posted to the class web page
 - First reading: "Art in the Age of Mechanical Reproduction"
 - 1936 essay by German cultural critic Walter Benjamin

Drawing Machine Survey

- □ Not comprehensive!
- □ Kinetic art as drawing machines
 - Ranges from very simple to very complex
 - Mark-making takes on many meanings

Very Simple Drawing Machines

http://www.youtube.com/watch?v=oQMcRvkkoO0

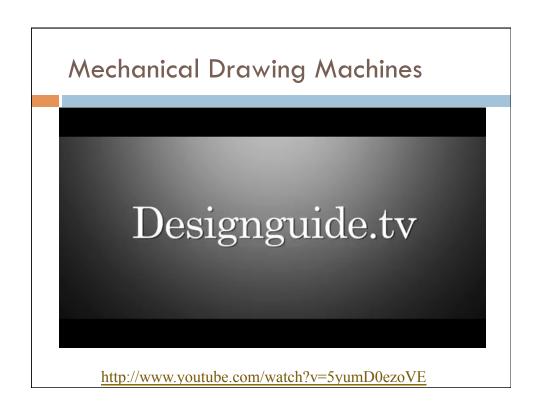
Very Simple Drawing Machines


http://blubee.com/theblog/?p=53

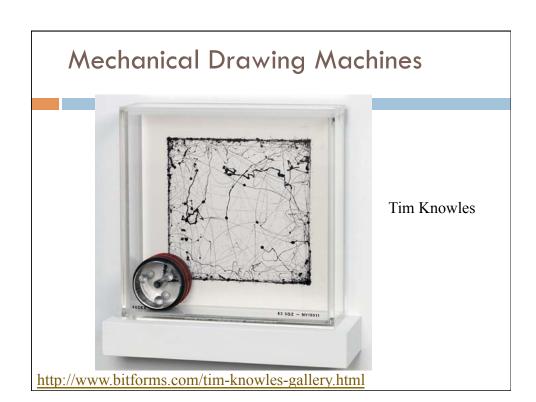
Very Simple Drawing Machines

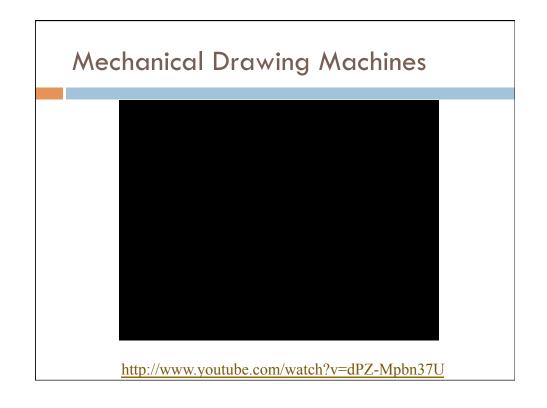
http://www.youtube.com/watch?v=nJuVvxLeeaU

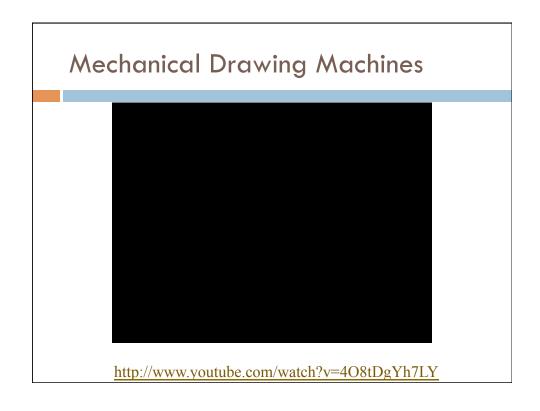
Mechanical Drawing Machines

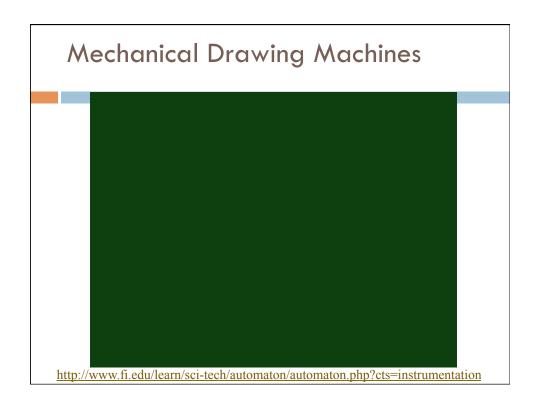

Jean Tinguely Metamatic 1959

http://www.youtube.com/watch?v=GOo5uq2fH6g

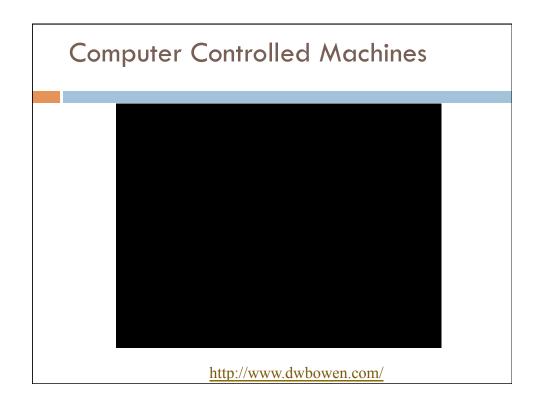

Mechanical Drawing Machines

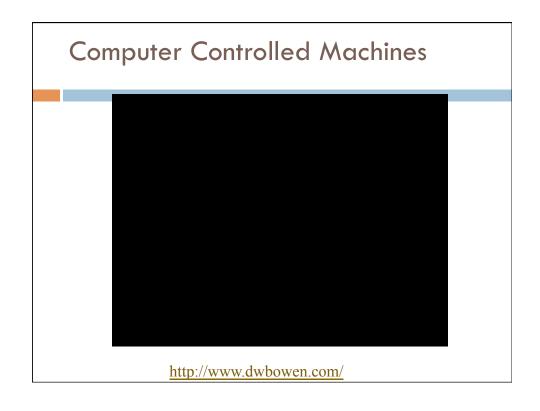


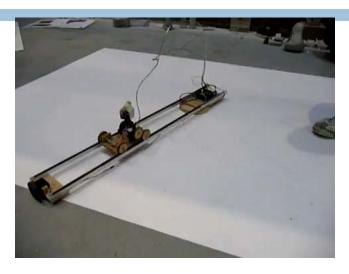

http://www.happy-pixels.com/2011/07/08/drawing-machine/



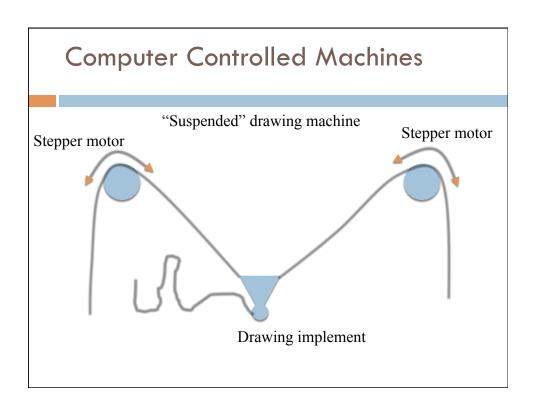
Mechanical Drawing Machines

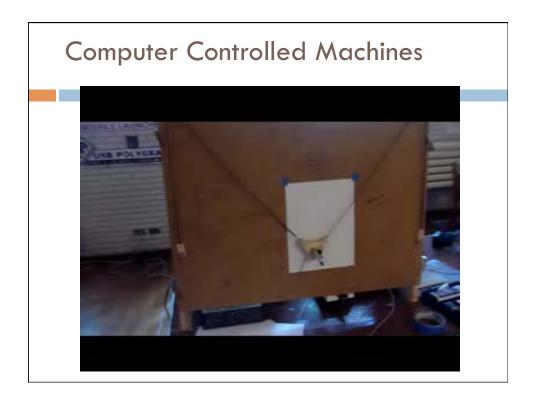

http://www.youtube.com/watch?v=pokSViy6Eck

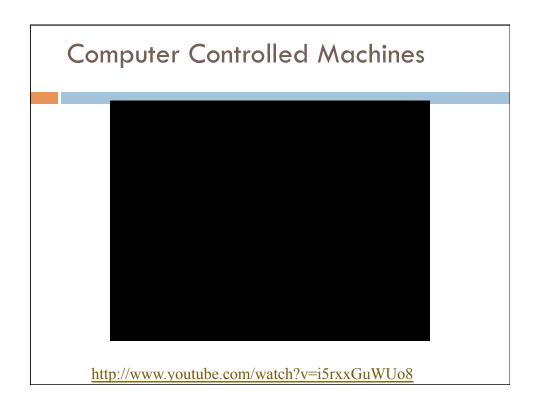

Mechanical Drawing Machines

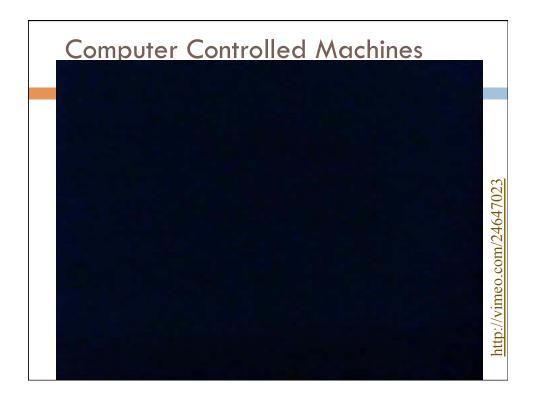


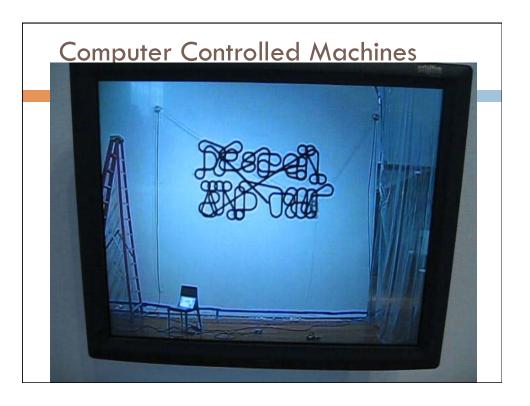
http://www.youtube.com/watch?v=Qem8FVdQ5gA

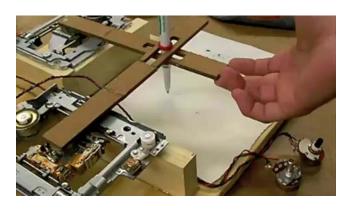







http://www.youtube.com/watch?v=VnwActJx2nU




"SADbot" suspended drawing machine – Dustyn Roberts
http://www.youtube.com/watch?v=mDNl4pxh dk

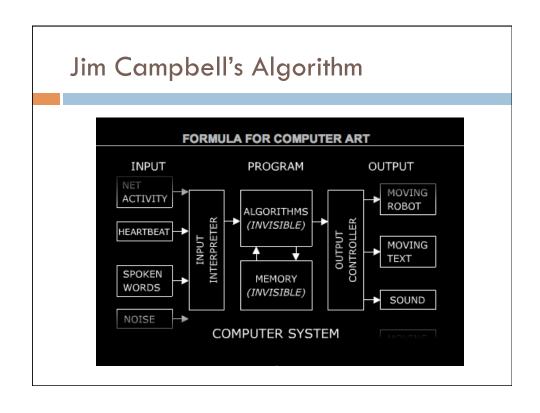
http://www.youtube.com/watch?v=z8V1eTA5R6E

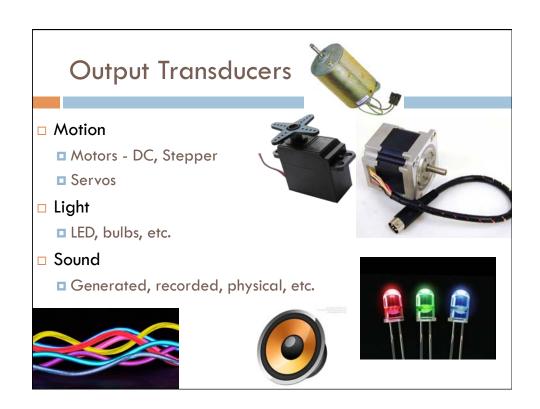
Computer Controlled Machines

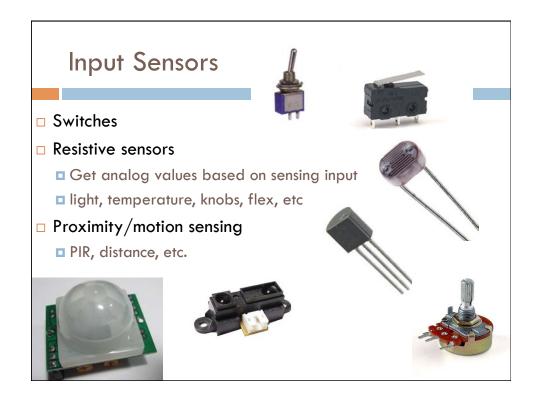
http://www.youtube.com/watch?v=qWfUAfPWoIA

Computer Controlled Machines

http://www.youtube.com/watch?v=uI5L42-ZY00

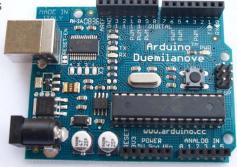

 $\underline{http://www.youtube.com/watch?v=}T0EAvqCdP2s$


Whew!


- A lot of variation in kinetic art drawing machines
- □ That's just a sampling...
 - Random drawing machines
 - powered by motors, wind, mail carriers, etc.
 - Mechanical drawing machines
 - hand-cranked, motor driven, wind-up, etc.
 - Reactive drawing machines
 - use environmental sensors of some sort
 - Computer controlled drawing machines
 - range from random to precise
- □ Pen/ink, paint, light, sand, etch-a-sketch, etc...

First Assignment

- Look around on the web and find something interesting related to kinetic art and drawing machines
 - Think about other definitions of "draw"
 - Think about pure drawing ideas that might inspire mechanical drawing
 - Think about non-mark-making kinetic art pieces that might inspire something that makes marks
 - Think about some engineering artifact that might inspire an art piece
 - □ Think about other interaction modes
 - Think about other presentations and contexts
- Come on Thursday ready to (quickly) share it

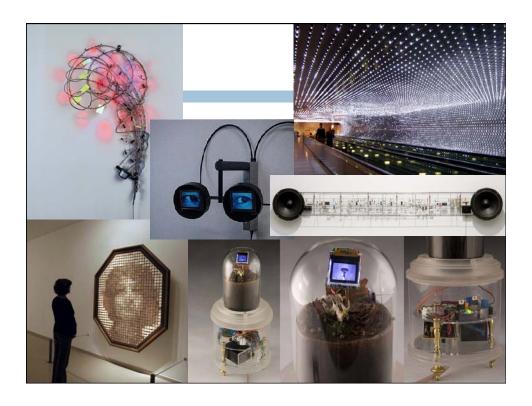


Electronic Glue

- □ Power supplies
- Transistors
 - used as electronic switches for medium power devices
- □ Relays
 - used as electronic switches for high power devices
- □ resistors, capacitors, wires, etc.

Computer Control

- Microprocessor
 - receive inputs
 - do some computation
 - You'll have to write some programs...
 - send signals to the outputs



Other Resources

- □ Wood and metal shop in Art department
- □ Metal shop in the Engineering building
 - We'll schedule orientations...
- Laser cutter in the Art department
 - VERY cool machine can cut many things like plastic, paper, and plywood
- Water jet cutter in Engineering
 - VERY cool machine that can cut almost anything
 - Requires training costs \$10 for training class
 - Costs \$47/hour (but most jobs take only minutes)

Complete Art Piece

- □ Kinetic concept in a well-conceived and constructed artifact
- □ For this semester, think about making marks
 - □ Traditional 3d materials
 - Wood, metal, plastic, wiring, and other structural materials
 - Unattended functioning (i.e. in gallery)
 - Consider maintenance and support issues too...

Hylozoic Veil at The Leonardo O7 http://www.youtube.com/watch?v=0cdOFIkoZso

Microcontroller

- □ The "brains" that coordinates the kinetics
 - Small computers
 - Typically with special support for sensors and actuators
 - Analog-digital converters on inputs
 - pulse-width modulation on outputs
- □ We'll use one called Arduino

What is Arduino?

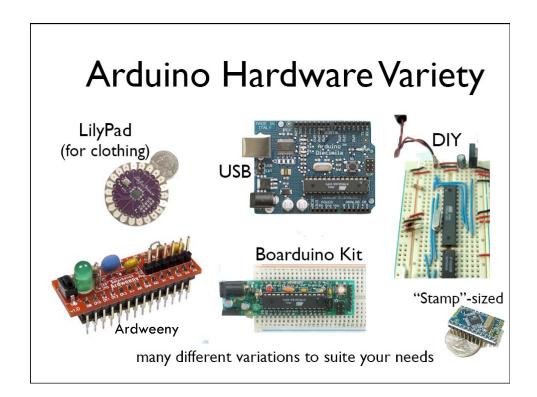
The word "Arduino" can mean 3 things

A physical piece of hardware

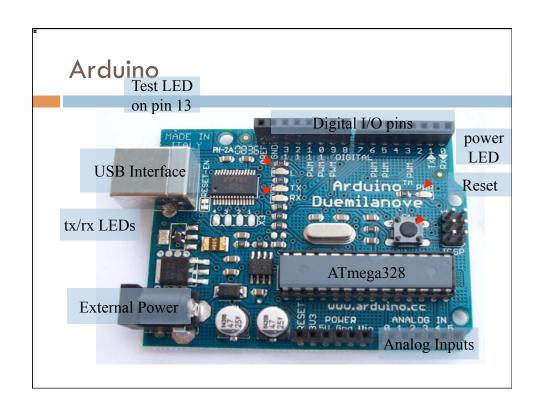
A programming environment

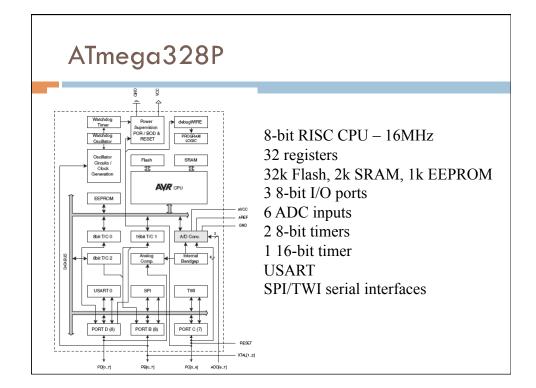
A community & philosophy

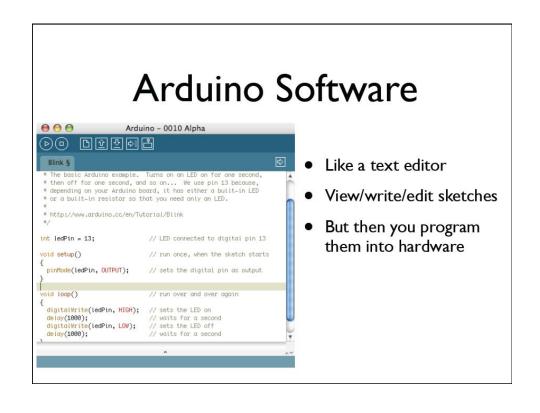
Arduino Community

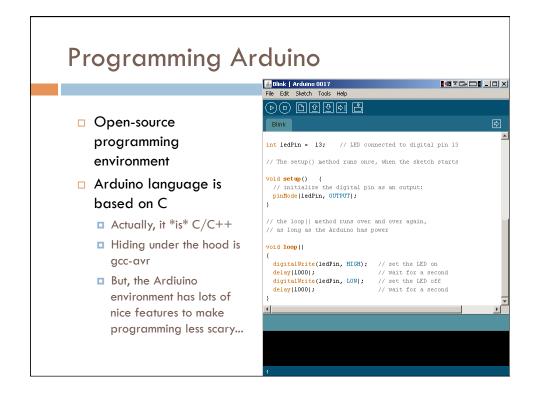

- □ Open source physical computing platform
 - □ "open source" hardware
 - open source software environment
 - physical computing means sensing and controlling the physical world
- Community
 - Examples wiki (the "playground")
 - Forums with helpful people

Arduino Hardware

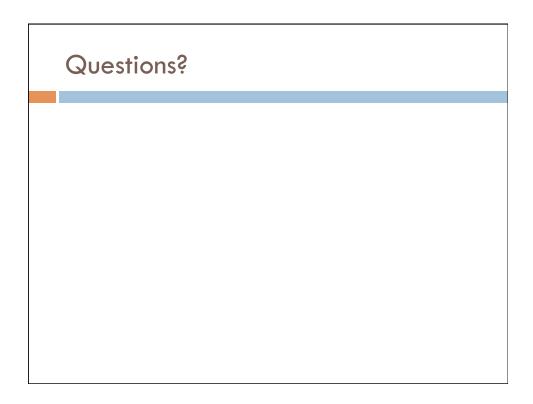

- Similar to Basic Stamp (if you know of it)
 - but cheaper, faster, & open
- Uses AVR ATmega_{328p} microcontroller chip
 - chip was designed to be used with C language


Arduino MADE IN M-2ACBS 10 9 8 7 6 5 1 3 2 1 8 9 8 7 6 5 1 8 7 6 1 8




Arduino

- □ Based on the AVR ATmega328p chip
 - 8 bit microcontroller (RISC architecture)
 - 32k flash for programs
 - □ 2k RAM, 2k EEPROM, 32 registers
 - 14 digital outputs (PWM on 6)
 - 6 analog inputs
 - Built-in boot loader
 - Powered by USB or by external power



More Arduino Info?

- www.arduino.cc/
 - Main Arduino project web site
- www.arduino.cc/playground/Main/HomePage
 - "playground" wiki with lots of users and examples
- www.freeduino.org/
 - "The world famous index of Arduino and Freeduino knowledge"
- □ www.eng.utah.edu/~cs5789
 - our class web site

Resources for this class

- □ We have some supplies for the class
 - Arduino boards
 - sensors of various different types
 - motors and servos
 - LEDs and LED controllers
- You should expect to have to buy a few more parts on your own to complete your project though...

