Programming Activity - Resistive Sensors and Servos

The goal is to make sure that everybody knows how to connect a resistive sensor
(potentiometer and light sensors are examples), how to calibrate those sensors by
writing the values to the serial monitor, how to map those values to a sensible range
of values, and how to use those values to update an output (like an LED or a servo).

Overview

There are five steps in today’s exercise. They lead up to a circuit that moves a servo
in response to changing light levels. Along the way we’ll use example programs that
are already in the Arduino software suite, but we’ll modify them slightly along the
way. The five steps are:

Step1: Connect a potentiometer (knob) to the analog input of the Arduino, and use
it to control the flashing rate of an LED.

Step2: Replace the potentiometer with another resistive sensor - the cds light
sensor. Now the changing light level will modify the flashing rate.

Step3: Use the “serial monitor” to see what values are being returned by the light
sensor. By writing down the values you can calibrate the light sensor.

Step4: Use the “map” function in the Arduino library to take the range of values that
are returned by the sensor, and re-map those values to a different range of values
that is a more useful range.

Step5: Replace the flashing LED with a moving servo. The servo requires a slightly
different way of describing things in the code using the Servo library and “member
functions” in the code. The calibrated light sensor is used to control how far the
Servo moves.

Now you should have enough tools to work on Assignment 3. For this assignment
you should use some sort of sensing (switches, pots, light sensors) to control some
sort of output (LEDs, servos). The work should have some relationship to drawing
or mark making. What that relationship is, is up to you.

Details

Stepl: connect a potentiometer (pot, or knob) to an analog input of the Arduino
and learn to use it to control the flashing rate of an LED.

* Use the following components: an LED, and a 22092-330%Q resistor for the
LED, and a potentiometer.

* Connect the LED and current-limiting resistor to one of the digital outputs of
the Arduino. This figure shows using pin 9 as an output pin. That’s a fine
choice, but you can choose a different pin if you like. Choose one that is a

“PWM” pin though. (Actually, the schematic shows pin9, but I think the photo
uses pin 11!)

Arduino
board

resistor

g

Connect the potentiometer to an analog input of the Arduino. A
potentiometer is a resistor that has a third terminal that can “tap” the
resistor at different spots. You usually change where the tap hits the resistor
by turning a knob. There are linear “slider” pots too. If you put the endpoints
of the pot at 5v and gnd, then when you measure at the tap, you get some
analog voltage between 5v and Ov. The analog inputs of the Arduino are on
the side of the board nearest the processor chip. There are 6 analog inputs
named A0, A1, AZ, A3, A4, and AS.
+5V
A

10k

measure here D——-% .
potentlometer

Our pots are also 10k pots, but they’re smaller and made of plastic. The
terminals are in the same arrangement though: the measurement point is in
the middle, and 5v and gnd are on the outside. [t doesn’t matter which one
you connect to 5v and which one to gnd. The only difference is whether

turning clockwise or counterclockwise will raise the voltage.

turned turned somewhere
anti-clockwise A .5y clockwise +5V in the +5V
middle
5 volts O—>

2.3 volts O——>
0 volts O—>

gnd gnd gnd

* In the Arduino programming environment, load the
Examples— Analog— AnalogInput program. Modify it to use the LED pin
and the analog pin you chose to use. Note that the pot value is read using the
analogRead (<pinnumber>) ; function. This returns a numeric value
between 0 and 1023. The value that’s read from the pot is used to modify the
delay of the flashing LED. You can change the value of the delay (change the
number that’s returned from the pot) by turning the knob on the pot.

* This is a general technique that uses a pot/knob to return a range of numbers
that can be used to modify the behavior of some aspect of the program.
Because of the way that the analog voltages are sampled, the numbers you
get from a pot are always between 0 and 1023, no matter what size pot you
use. 10kQ is a good general pot size for these types of circuits.

Stepz: connect a light sensor to an analog input of the Arduino and have it control
the flashing delay of an LED instead of the pot. This swaps out the pot for another
circuit component that acts like a variable resistor. This is a cds light sensor (cds
stands for the material it’s made of - Cadmium Sulfide). A cds sensor is
photoresistive - the resistance between the terminals changes as the light intensity
changes. The brighter the light, the lower the resistance.

Use the following components: A light sensor and a resistor between 330Q
and 10kQ. Light sensors look like flat-topped components with a squiggly
line on the top. The squiggly line is the photoresistor.

Now connect the light sensor to one of the analog pins of the Arduino. The
light sensor (like many resistive sensors) needs to be connected with a series
resistor just like the LED. In this case you may be able to use a larger valued
resistor like a 10kQ resistor. In general, if the light sensor you have is small
(*4” or less) you'll probably want to use a small resistor like 330Q or 470€2. If
it’s larger like %4” to %: across on the top, you can use a larger resistor up to
10k€2. The resistor value isn’t critical. It just changes slightly the range of

values you'll get back from the sensor (see Step3). The circuit in the figure
uses the A2 analog pin. You can pick any of the analog pins you like.

Photocell Circuit

+5V

[
photocell & }\ s:sss usunl
PinA2 mmv\nm\ o o B = . 0 © =
1ok |-n---¥---- .-I..
| m = = & s = am L
brown-black-orange 5 % % EEEEE R
4 % ¥ 3 3 " ®aEw " 2w EN
— 5 a5 wa == = e EN

Now rerun the AnalogInput program. Shading the light sensor will
change the flashing rate of the LED by changing the resistance of the
photocell, and thus changing the value that is read by the
analogRead (<pinnumber>) ; function.

But, the range of flashing rates is probably not as wide as with the pot.
This is because the range of resistances is not as wide with the photocell
as with the pot, so the numbers you read back are not all the way to 0 and
not all the way to 1023.

This is a great way to change the behavior of your program based on an
environmental condition like the light levels. There are many resistive
sensors that do the same thing - change their resistance based on some
environmental condition - like temperature, Co2 concentration, pressure,
strain (bending), humidity, etc.

Step3: Use the serial library to see what range of values you're getting from the
light sensor. This is one way of “calibrating” your sensor - figuring out what the
range of values is that you're getting from the sensor. You might be able to figure
this out with details about the component, but it’s often easier just to use this
calibration procedure to see what values you're actually getting.

Because you probably don’t know what the resistance values you're
getting out of your light sensor, it's hard to predict what values you'll get
out of the analogRead (<pinnumber>) ; function.

So, one calibration technique is just to print out the values you're getting.
If you do this every 1/10 of a second or so, and print the number, you'll
be able to see what values you can expect as you shade and unshade the
Sensor.

To print values, we use the “Serial” library in the Arduino programming
language. This library lets you print things to a window on the Mac (or
PC) that you're connected to through the USB cable. The Serial library has
three parts:
o Initialize the library with Serial.begin (<baudrate>) ;
This sets the speed that characters are sent. Baud rates are
restricted to certain numbers: 300, 1200, 2400, 4800, 9600,
14400, 19200, 28800, 38400, 57600, or 115200. The larger the
number, the faster individual characters are sent to the computer.
In practice, 9600 is fine for our purposes, and is a standard baud
rate. Others are fine too.
o You can send values to the Mac/PC window (called the “Serial
Monitor”) using the Serial.print (<value>) ; or

Serial.println (<value>) ; function. The first one prints the
value to the serial monitor, the second prints the value and then
starts a new line. The value can be a variable (in which case the
value in that variable is printed), or a number or a string in quotes
in which case that number or string is printed.

o You open the serial monitor on the Mac/PC using the icon in the
upper right of the Arduino programming environment. You need
to make sure that the serial monitor uses the same baud rate that
you used in the Serial .begin (<baudrate>) ; function.

* Now open the Examples— Basics— AnalogReadSerial program. This is
a very simple program that just reads a value from analog pin A0 (you can
change this if you have your light sensor connected to different analog
pin), and prints the value to the serial monitor. I like to add some delay to
the main loop.I'd add delay (100) ; to the loop so that you only update
things every 1/10 of a second (100msec).

* You could also add other Serial.print() statements to format the printed
values in a little nicer way. Try:
Serial.print(“Value from the sensor is “);
Serial.println(sensorValue);
delay(100);

* Asyoushade and unshade the light sensor, you'll see the range of values
that you're likely to see in this environment. Of course, you'll see different
values if you took this outside where it's brighter, or in a darker room.
Make a note of the likely highest and likely lowest value you’ll get in our
room.

Step 4 Use the “map” function to remap the values you're getting from the light
sensor to something that makes sense. The map function takes a range of expected
values (the low and high values you wrote down in step3), and maps them to a new
range. For examples, if you expect (based on the calibration) to get values that range
from 390 to 846, but you want to have the value you get when it’s dark be around
100 and the value you get when it’s bright to be around 1000, you could use map to
do this.

The map function is:
map (value, inLow, inHigh, outLow, outHigh);

In the previous example, the map call would be:
map (sensorValue, 390, 846, 100, 1000);

This process is technically called “interpolation”. The numbers in the
original range are interpolated so that they fall within the new range, but
in the same relative position in the range. That is, a number that is around
1/3 of the way through the original range, will be about 1/3 of the way
through the new range. But, that will fall on a different number because
the range is different.

This map function returns a new value that is in the new range, so you
need to set a variable to the value returned by this function. You can use

the same value as the one you're mapping if you like:
sensorValue = map (sensorValue, 40, 235, 0, 255);

Load the program Examples— Analog— AnalogInOutSerial. This
program reads the value from an analog input (like your light sensor),
maps the value that you read in to the range 0-255, then prints out the
original value, and the mapped value. It also sets the LED to a brightness
value based on this mapped value.

Change the map function so that is uses the values you measured in Step3
as the inLow and inHigh values. Leave the outLow and outHigh
values as 0 and 255. It’s good to be a little conservative in the “in” values.
That is, if you measured 40 and 235 as the values in Step3, use 35 and
245 as the “in” values in the map function. This will give up a little bit on
the output range, but you won'’t go outside that range either.

The reason the output mapped value is 0-255 is that this is the range that
the analogWrite function will accept. This is the function that “dims”
the LED by changing the pulse width modulation (PWM).

If you still have your LED wired up, you'll see the LED get brighter and
dimmer as you shade your light sensor.

Step5: Learn to make a servo move - use the input from the light sensor to
change the value of the servo position. A servo is a little motor that moves
(rotates) in response to a change in the input signal. The input signal is a
PWM signal, so you’d think you could use only PWM pins. But, the servo
library code does something clever so that you can use any digital output pin
you like.

Servos look like little square box with wires coming out of one end, and a
motor shaft that turns. Servos usually have a restricted range of motion of
around 0-180 degrees.

Connect your servo to your Arduino (use the breadboard). The three wires of
the servo are power, ground, and signal. The colors aren’t always consistent,
but the ground is usually the darkest color, and on one edge of the cable. The
power is in the middle, and the signal wire is on the other end, and is usually
the lightest color.

Ground (0V)
Power (+5V)
Control (PWM)

Connect the power to 5v, the ground to gnd, and the signal (PWM control) to
one of the digital pins of the Arduino.

In the Arduino programming environment, load the

Examples— Servo— Knob program. This program will take an analog input
from one of the analog pins, and use that value to move a servo. A few things
to note about this program:

©)

The servo library needs to be “declared” so that Arduino knows that
you're using it: #include<Servo.h>

Each servo that you use needs to be defined as a “servo object” using
the following statement: Servo <servoname>; Inthe Knob
program there is only a single servo named “myservo.” You can use
any names you like - use a new name for each servo.

Each servo object will have a different name - and each servo object
will have “member functions” associated with it. The most important
member functions are “attach” and “write”.

Member functions are called by putting the name of the function after
the object name separated by a dot. Like myservo.attach (9) ;
This takes the servo named “myservo” and attaches it to digital pin 9.
Each servo needs to be “attached” to a digital output pin using the
“.attach” member function that is associated with each servo
object.

Now in the 1oop () code you can change the servo’s position to a new

angle between 0 and 179 degrees using the .write member function:
myservo.write (23); // move the servo to 23 degrees

Note that the knob program is written to imply that there’s a pot (knob)

providing the analog input, but we can use the light sensor as just another
type of analog sensor. Make sure to update the Knob program to use the
analog pin that your light sensor is connected to! In my case, that is:

int potpin = A2;

In this case, you probably want to modify the “map” function for the
calibration values from Step3. That is, something like:
val = map(val, 40, 230, 0, 179);

The output range of 0 to 179 is the full range of a servo - 0 degrees to 179
degrees (180 degrees counting from 0).

Once the light sensor and servo are connected, you can run the “knob”
program and watch the servo change position based on how much light is
falling on the light sensor.

Servos are a very convenient way to get things to move under program
control. You can do simple rotational motion by connecting directly to the
rotating hub of the servo, or linear(ish) motion by connecting a wire to a
“horn” that is attached to the hub.

Step6: Assignment #3 - use some environmental inputs (light sensor, pot,
switches) and some output devices (LEDs, servos), and a program on the Arduino to
make something interesting. It should relate in some way to drawing or mark
making. You may use any other materials you like in constructing your piece.

