.- Arduino ‘Hands-On 2

" CS5968 / ART4455

Disclaimer

O Many of these slides are mine

O But, some are stolen from various places on the web

© todbot.com — Bionic Arduino and Spooky Arduino
class notes from Tod E.Kurt

© ladyada.net — Arduino tutorials by Limor Fried

Getting Input (Digital)

e Switches make or break a connection
® But Arduino wants to see a voltage

e Specifically,a “HIGH" (5 volts)

® ora“LOW" (0 volts)

- J-l_,_|—
Low

How do you go from make/break to high/low?

Switches

Digital inputs can
“float” between 0 and

5 volts 1'?7.m
—
Resistor “pulls down” T
input to ground (0 ? preSo——

volts) a

Pressing switch sets
input to 5 volts “pull-down”

Press is HIGH
Release is LOW

Why do we need the “pull down” resistor?

Another Switch
Resistor pulls up
input to 5 volts y
Switch sets input N 75 e
to 0 volts ‘
[=
But now the sense |
is inverted
® Press is LOW
® Release is HIGH “pull-up”

A Switch

connect
when
pushed

always connected together

Pressing the button, “closes the gap”

9/1/10

Using a Switch

Using digitalRead()

® |n setup():use pinMode (myPin, INPUT)
to make pin an input

® |n loop():usedigitalRead(myPin) to
get switch position

® If doing many tests, use a variable to hold the output value of
digitalRead().

® e.g. val = digitalRead(myPin)

digitalRead(pin);

g pm),

/I constants won't change. They're used here to set pin numbers:
const int buttonPin =2; // the number of the pushbutton pin

const int ledPin = 13; // the number of the LED pin

/I variables hold values that will change:

int buttonState = 0; /I variable for reading the pushbutton status

void setup() {

pinMode(ledPin, OUTPUT); // initialize the LED pin as an output:
ize the pushbutton pin as an input:

pinMode(buttonPin, INPUT); // initi
}

void loop(){

buttonState = digitalRead(buttonPin); // read the state of the pushbutton

value:

if (buttonState == HIGH) {
digitalWrite(ledPin, HIGH); } /[turn LED on:
else { digitalWrite(ledPin, LOW); }// turn LED off:

}

// buttonState HIGH means pressed

Moving on...

O Write a program that reads the value on an input pin
© Use the button to change from blinking fast to blinking
slow

9/1/10

e LED
it pin (for a

int ledPin = 13; // choose
int inPin = 7; 3
int val = 8; 124
int delayval = 166;

etup() {
ledPin, OUTPUT);
ode(inPin, INPUT);

n
for reading the pin

roid

as output
utton as 1

oid loop{){

val = digitalRead(inPin); read input value

if(val == HIGH)
delayval = 1660;

delayval = 168;

‘(delayval);
italWrite(ledPin, LOW);
(delayval);

alWirite(ledPin, HIGH); // blink the LED and go O

Multiple Switches

T~5V

pinY

Same sub-circuit, w0
5 : @,
just duplicate

pn7,
prér
| switcn
&g LoM
J' |
sV
EXY

Make Your Own
Switches

Anything that makes a connection

Wires, tin foil, tinfoil balls, ball bearings

Pennies!

Nails, bolts, screws

® Or repurpose these tiny switches as bump
detectors or closure detectors

Make Your Own Switches

Analog Input
To computers, analog is chunky

digitized point

analog
signal digitized signal

voltage

Analog Input

e Many states, not just two (HIGH/LOW)
® Number of states (or “bins”) is resolution

e Common computer resolutions:

® 8-bit = 256 states
® 16-bit = 65,536 states
® 32-bit = 4,294,967,296 states i e

oltage

Analog Input on Arduino

O Our version uses ATMega328p
& six ADC inputs (Analog to Digital Converter)
© Voltage range is 0-5v
© Resolution is 10 bits (digital values between 0-1023)
© In other words, 5/1024 — 4.8mV is the smallest voltage
change you can measure

© analogRead(pin); :
g 9 (pin) Test LED Arduino

reads an analog pin PRET
© returns a digital value
between 0-1023
© analog pins need no
pinMode declaration

Analog Input

Sure sure, but how to make a varying voltage?
With a potentiometer. Or just pot.
+5V

10k
potentiometer

measure here O—

9/1/10

Potentiometers

Moving the knob is like moving
where the arrow taps the voltage on the resistor

turned turned somewhere
anti-clockwise A ,5v clockwise +5V in the +5V
middle
5 volts O—>
2.3 volts O—>
0 volts O—>
gnd gnd gnd

Arduino Analog Input

Red toVcc
Purple to A0
Blue to Gnd

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; /I select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:
/I Note that you don’t need to declare the Analog pin — it's always input

}

void loop() {
sensorValue = analogRead(sensorPin); // read the value from the sensor:
digitalWrite(ledPin, HIGH); // turn the ledPin on
delay(sensorValue); / stop the program for <sensorValue> milliseconds:
digitalWrite(ledPin, LOW); // turn the ledPin off:
delay(sensorValue); / stop the program for for <sensorValue> milliseconds:

}

Moving on...

© Write a program to read an analog value from a pot
and use that value to control the brightness of an LED
© Fade the LED by turning the pot

o Useful function is
map(value, fromlow, fromhigh, tolow, tohigh);

y = map(x, 0, 1023, 50, 150);

Test LED Arduino

on pin 13
© Also remember
analogWrite(pin,value);
© PWM value from 0-255

s LEDs

potFade

int potPin = 0; /I the analog input pin from the pot
intledPin = 9; /I pin for LED (a PWM pin)

int val; /I Variable to hold pot value

void setup () {

/I declare ledPin as output
/I potPin is in input

pinMode(ledPin, OUTPUT);
pinMode(potPin, INPUT);

}

void loop() {
val = analogRead(potPin); /Iread the value from the pot
val = map(val, 0, 1023, 100, 255); // map to reasonable values
analog\Write(ledPin, val);

What good are pots!?

® Anytime you need a ranged input
o (we're used to knobs)
® Measure rotational position

® steering wheel, etc.

® But more importantly for us, potentiometers
are a good example of a resistive sensor

9/1/10

+5V

Sensing the Dark

® Pots are example of a voltage divider
® Voltage divider splits a voltage in two

® Same as two resistors, but you can vary them

; +5V

Sensing the Dark:
Photocells

® aka. photoresistor, light-dependent resistor

A variable resistor

Brighter light == lower resistance

Photocells you have range approx. 0- 10k

@ﬁocell

schematic symbol

Photocell Circuit

+5V

Photocell Arduino
Sketch

Can use as before, sketch “analog_read_led”

Change t0 0 —, e
le®in « 133
vl = 0
)
B ledP U
)
00 (
val » (potPin);
(lePin, WIG);
(vat):
La(lePin, LON);
(vt}
)

Wave your hand over it = blink faster
Point it towards the light = blink slower

Moving on...

O Connect a photocell instead of a pot to your fading circuit

© Do you get the same range
of fade as with the pot?

© Why or why not?

Vee
+5V

pin A0
10k

gnd

Resistive sensors

N‘ circuit is the same
S for all these
thermistor oy Z ¥4
(temperature) E
T photocell
. (light)

flex sensor
(bend, deflection)

force sensors

also air pressure
(pressure) "

and others

9/1/10

LED Brightness Functions

Then turn those numbers into an array

byte bright_table[] « { 39, 38, 30, 49, 50, 60, 70, 89, 90,100,
110,120,139,140,150,160,179,159,190,200,
2108,226,230,240,250,250,240,239,220,219,
200,190,180,170,160,150,140,139,120,119,
100, %, 88, 79, 60, 50, 40, 39, 30, 30 };
t max_count = 58; f r the br t

Use any pattern of numbers you like
but they must range between 0-255

0 = full off
127 = half on
255 = full on

LED Brightness Functions

Once you have your table...

te bright_table[] « (38 3, 3, 4, 59, 60, M, 89, 99,100,
139, HL 159,168, l 2
> 240

w179,
, 70, u! "A! 40,

...the rest is just programming

. Getabright_table value

. Send it out with analogWrite()

. Advance counter into bright_table
. Wait a bit

. Repeat

VA WN —

Glowing Eyes Sketch
! fepin - 16; “led_glow"

te bright_toble[] = { 3, 3, 3, 49, 50, 60, 70, 89, 99,109,
119 2,140,150,160,47, 180]
,249,250,259,240,2

&

" .IW 179,160,150,140,130
:wmm*awmmmm-n)

L omax_count « 59;

t count = 8;

t vol « 8;

stup() {
(ledPin, OUTPUT);

oe() {

) (1edPin, bright_table[count]);

countes;
(count > max_count)
count = 93

val = (potPin);
val = val/4;
(val);

Communicating
with Others

® Arduino can use same USB cable for
programming and to talk with computers

® Talking to other devices uses the “Serial”
commands

® Serial.begin() — prepare to use serial
® Serial.print() - send data to computer

® Serial.read() - read data from computer

Serial from Arduino to PC

O Serial.begin(baud-rate);

o baud-rate is 300, 1200, 2400, 4800, 9600,
14400,19200, 28800, 57600, or 115200

Sets serial bit rate

o Serial.print(arg);
sends arg to the serial output — can be number or string
Serial.print(arg,format); // formats the arg
o format can be BYTE, BIN, OCT, DEC, HEX

o Serial.printin(arg);
© Same, but also prints a newline to the output

Send data to PC

void setup() {
Serial.begin(9600); // init the serial port

}

void loop() {
Serial.printin("Hello World!"); // print to the screen!
delay(500); // Wait so you don’t print too fast

}

9/1/10

Checking on Analog Inputs

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; /I select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:
Serial.begin(9600); /I Init serial communication at 9600 baud

}

void loop() {
sensorValue = analogRead(sensorPin); // read the value from the sensor:
Serial.print(“Sensor value is: “); /I print a message
Serial.printin(sensorValue, DEC); /I print the value you got
delay(500); /l wait so you don’t print too much!

/I VERY useful for getting a feel for the range of values coming in
/I map(value, inLow, inHigh, outLow, outHigh);

Serial From PC to Arduino

© Serial.available();

returns an int that tells you how many bytes remain in
the input buffer

O Serial.read();
© returns the next byte waiting in the input buffer

o Serial flush();

O clear the input buffer of any remaining bytes

Serial Read Example

int incomingByte = 0; // for incoming serial data
void setup() {
Serial.begin(9600); // opens serial port, sets data rate to 9600 bps

}

void loop() { /I send data only when you receive data:
if (Serial.available() > 0) { // read the incoming byte:

incomingByte = Serial.read();

I say what you got:
Serial.print("| received: ");
Serial.println(incomingByte, DEC);
}

}

Arduino Says “Hi”

ene Arduino - 0010 Alpha

“SerialHelloWorld”

Sends “Hello world!” il
to your computer

Click on “Serial e dis,
Monitor” button to i
see output

Watch TX LED compared
to pin |13 LED

Telling Arduino What To Do

806 Arduino - 0010 Alpha

“SerialReadBasic”

You type “H”, LED blinks

In “Serial Monitor”,
type “H”, press Send

)
—— —————— = 5

| 19200 baud ¥ 1 Send

Serial.available() tells
you if data present to read

Arduino Communications

is just serial communications

Psst, Arduino doesn’t really do USB

It really is “serial”, like old RS-232 serial

All microcontrollers can do serial

® Not many can do USB

Serial is easy, USB is hard

=

serial terminal from the olde days

9/1/10

Serial Communications

e “Serial” because data is broken down into bits, each
sent one after the other down a single wire.

® The single ASCII character ‘B’ is sent as:

‘B’ 01000010
= LHLLLLHL

= I .=

® Toggle a pin to send data, just like blinking an LED

® You could implement sending serial data with digitalwrite()
and delay()

® A single data wire needed to send data. One other to receive.

Arduino & USB-to-serial

Arduino board is really two circuits

e Digita

:g; Hé‘

- Ardul NG BPg
S, e e v

Arduino Mini

Arduino Mini separates the two circuits

Arduino Mini USB adapter Arduino Mini

USB is totally optional for Arduino
But it makes things easier

Arduino & USB

® Since Arduino is all about serial
e And not USB,

e Interfacing to things like USB flash drives,
USB hard disks, USB webcams, etc. is not
possible

Controlling the Computer

e Can send sensor data from Arduino to
computer with Serial.print()

® There are many different variations to suite
your needs:

t(val ,BYTE);

Controlling the Computer

You write one program on Arduino, one on the computer

In Arduino: read sensor, send data as byte

vol » (analoglreut)
: (val/4,8YTE);
)3

In Processin,

ead the byte, do something with it

erial "

Controlling Arduino, Again

8N Arduino - 0010 Alpha

“SerialReadBlink”

Type a number 1-9
and LED blinks that
many times

Converts typed ASCII value | Slor(ise)s
into usable number

19200 baud ¥ 3 Send

Most control issues are
data conversion issues

Reading Serial Strings

® The function
“serial.available()"
makes reading strings
easier TP iothuaing (o 2w w) ¢

® Can use it to read all)
available serial data from strarray(1] «
computer

strhevay(i] = 0
® The'readserialstring()"”

function at right takes a

character string and sticks

available serial data into it

Controlling the Computer

® Receiving program on the computer can be
in any language that knows about serial
ports

® C/C++, Perl, PHP, Java, Max/MSP,
Python, Visual Basic, etc.

® Pick your favorite one, write some code for
Arduino to control

Tl Gec_tex Char Code Goar] [Oec_riex_Char | |Osc_riax

~e] o Joo oL 4 [%

a1 |o on o | »

| 2| o7 “ | »

“c|a|a e @ |0 »

0| a|oe €or @ [

e | s |os e o [

ar| e |oe ack % |44 ASCII codes

e | 2 |or e n e

o s 7 |4

Ml I P e o D Standard byte codes for

~ |10 [oa wr 7 |4a characters

~x |11 |08 7 |48

L 1 oc FF ”» “c .

~m |13 |00 7 |4 Mysterious val = val — ‘0’;

o i lor e statement converts the byte

~» |16 |10 o |50 that represents the character
o |5

to a byte of that number

PR

For example, if the character
is ‘3’, the ASCII code is 51

The ASCII code for ‘0’ is 48

COBNURANR LN DN

So,51-48=3

)N X ECE =N DO TOTE R TORTM ST D®,

O e NCXTCC=UTITOS BmX TR &N 0

steceessscsarcse

This converts the character

‘3 into the number 3
005, e cide has the same effect 3¢ ASC 8 (85)
< ¢8R5 ver.

Moving on... Servos

O Servo motors are small DC motors that have a range
of motion of 0-180°
© Internal feedback and gearing to make it work
© easy three-wire interface
© position is controlled by PWM signals

9/1/10

PWM

OQutput voltage is averaged from on vs. off time

output_voltage = (on_time / off_time) * max_voltage

5 volts
........... U I_J L -4 3.75 Volts
0 volts

75% 25% 75% 25% 75% 25%

S voits 1
{ | : { ~-1 2.5 Volts
Ovolts 50% 50% 50% 50°% 50% 50%
S voits
0 volts J u _ﬂ = =1 1.0 Volts

20% 80% 20% B80% 20% 80%

PWM

® Used everywhere

® Lamp dimmers, motor
speed control, power
supplies, noise making

® Three characteristics of
PWM signals

width
® Pulse width range (min/max)
® Pulse period height
(= l/pulses per second)
® Voltage levels —pemod

(0-5V, for instance)

Servomotors

® Can be positioned
from 0-180° (usaty)

® [nternal feedback
circuitry & gearing
takes care of the
hard stuff

® Easy three-wire
PWM 5V interface

Servos are Awesome

® DC motor
® High-torque gearing

® Potentiometer to
read position

e Feedback circuitry to
read pot and control
motor

® All built in, you just
feed it a PWM signal

Servos, good for what!?

® Roboticists, movie effects people, and
puppeteers use them extensively

® Any time you need controlled, repeatable
motion

e Can turn rotation into linear movement
with clever mechanical levers

Servos

e Come in all sizes

e from super-tiny

%
® to drive-your-car ’-
e But all have the same !
3-wire interface
Al
® Servos are spec'd by: ®
weight: 9g 157g

speed: .|2s/60deg @ 6V
torque: 2202/1.5kg @ 6V

voltage: 4.6-6V - 4
size: 21 1x28 mm 9
Our servos are: weight: 9g,
speed 0.12s/60deg at 4.8v,

torque (@4.8v) 17.50z/in (1kg/cm)
voltage range: 3.0 — 7.2v

9/1/10

10

Servo Mounts & Linkages

Lots of ways to mount a servo

And turn its rotational motion
into other types of motion

Servo Control

Ground (0V)
Power (+5V)
Control (PWM)

® PWM freq is 50 Hz (i.e. every 20 millisecs)
® Pulse width ranges from | to 2 millisecs
® | millisec = full anti-clockwise position

® 2 millisec = full clockwise position

Servo Movement

0 degrees 90 degrees 180 degrees

1000 microsecs 1500 microsecs 2000 microsecs

In practice, pulse range can range from 500 to 2500 microsecs

Servo and Arduino

First,add some jumper wires to the servo connector

Servo Example Program

#include <Servo.h> Il'include the built-in servo library
Servo myservo; // create a servo object to control the servo (one per servo)
intpos =0; I/ variable to store the servo position
void setup() {
myservo.attach(9); I/ attach servo control to pin 9
}
void loop() {
for (pos = 0; pos < 180; pos++) { // go from 0 to 180 degrees
myservo.write(pos); /I move the servo
} delay(15);l Il give it time to get there
for (pos = 180; pos>=1; pos--) { // wave backwards
myservo.write(pos);
delay(15);
}

Servo Functions

O Servo is a class

0 Servo myservo; // creates an instance of that class

O myservo.attach(pin);

© attach to an output pin (doesn’t need to be PWM pin!)
© Servo library can control up to 12 servos on our boards

© but a side effect is that it disables the PWM on pins 9
and 10

O myservo.write(pos);

O moves servo — pos ranges from 0-180

O myservo.read();

© returns the current position of the servo (0-180)

9/1/10

11

Moving on...

O Write a program to control the position of the servo from a
pot, or from a photocell
© remember pot analogRead(); values are from 0-1023

© measure the range of values coming out of the photocell
first?

© use Serial.print(val); for example
use map(val, in1,in2, 0, 180); to map in1-in2 values to 0-180

J

© Can also use constrain(val, 0, 180);

Side Note - Power

O Servos can consume a bit of power

© We need to make sure that we don’t draw so much
power out of the Arduino that it fizzles

© If you drive more than a couple servos, you probably
should put the servo power pins on a separate power
supply from the Arduino

© Use a wall-wart 5v DC supply, for example

‘3

Robo Cat Tgy Ida

Servo/Light Assignment

O Use a photocell on the input Vee
© put in series with 10k ohm resistor +5V

O use a servo on the output
o connect to a PWM pin

© make the servo do somethingin pin AQ
response to the amount of light 10k
falling on the photocell

Summary — Whew!

LEDs — use current limiting resistors (remember color code!)
© drive from digitalWrite(pin,val); for on/off
© drive from analogWrite(pin,val); for PWM dimming (values from 0-255)

buttons — current limiting resistors again
© active-high or active low (pullup or pulldown)
o read with digitalRead(pin);

potentiometers (pots)— voltage dividers with a knob
© use with analogRead(pin); for values from 0-1023

Ground (0V) gnd
1800 Power (+5V)
Control (PWM)
Summary — Whew!
0O photocells — variable resistors
© use with current-limiting resistors (to make voltage divider)
O Serial communications — read a byte, or write a value
© communicate to the Arduino enviroment, or your own program
O Servos —use Servo library to control motion
© might need external power supply
© range of motion 0-180°
0 Also setup() and loop() functions, and various C programming ideas

9/1/10

12

More Later...

use transistors as switches for larger current loads

DC Motors

Stepper motors

Sort of like servos, but with continuous range of motion

Can also be more powerful

12C serial bus
s Various LED driver chips
other serially-controlled devices

Piezo buzzers

make some noise!

But you can also use them as input devices to sense movement

IR motion sensors

o simple motion and also distance sensors

Accelerometers
‘Wii nunchucks, for example

Others?

9/1/10

13

