9/1/10

‘e

> Arduino Hands-On 2

CS5968 / ART4455

Disclaimer

O Many of these slides are mine

O But, some are stolen from various places on the web

todbot.com — Bionic Arduino and Spooky Arduino
class notes from Tod E.Kurt

ladyada.net — Arduino tutorials by Limor Fried

Getting Input (Digital)

® Switches make or break a connection
® But Arduino wants to see a voltage
e Specifically,a “HIGH” (5 volts)
® ora“LOW?” (0 volts)
HIGH
|

How do you go from make/break to high/low?

Switches

Digital inputs can
“float” between 0 and

+5V
5 volts [ﬁmn

Resistor “pulls down” ssm—— J'
InPUt to grou nd (O j ;l?rgwn,black‘o'ange)
volts) ond |

Pressing switch sets
input to 5 volts “pull-down”

Press is HIGH
Release is LOW

Why do we need the “pull down” resistor?

9/1/10

9/1/10

Another Switch

® Resistor pulls up
input to 5 volts v

10k
(brown,black,orange)

e Switch sets input
to 0 volts

measure here O

switch

® But now the sense ond
is inverted

® Pressis LOW
® Release is HIGH “PU"-UP”

A Switch

connect
when
pushed

always connected together

Pressing the button, “closes the gap”

Using a Switch

220

switch

Using digitalRead()

® In setup():use pinMode (myPin, INPUT)
to make pin an input

® In loop():usedigitalRead(myPin) to
get switch position

® |f doing many tests, use a variable to hold the output value of
digitalRead().

® e.g. val = digitalRead(myPin)

9/1/10

digitalRead(pin);

/I constants won't change. They're used here to set pin numbers:
const int buttonPin =2; // the number of the pushbutton pin
const int ledPin = 13; // the number of the LED pin

/I variables hold values that will change:
int buttonState = 0; /l variable for reading the pushbutton status

void setup() {
pinMode(ledPin, OUTPUT); // initialize the LED pin as an output:

pinMode(buttonPin, INPUT); // initialize the pushbutton pin as an input:

}
void loop(){
buttonState = digitalRead(buttonPin); // read the state of the pushbutton
value:
if (buttonState == HIGH) { /I buttonState HIGH means pressed

digitalWrite(ledPin, HIGH); } // turn LED on:
else { digitalWrite(ledPin, LOW); }// turn LED off:

}

Moving on...

O Write a program that reads the value on an input pin

O Use the button to change from blinking fast to blinking
slow

9/1/10

i
int inPin = 7; // choose th
int val = 8; // variable
int delayval = 168;

void setup() {
pintode(ledPin, OUTPUT);
pinMode(inPin, INPUT);

¥

void loop(){
val = digitalRead(inPin);

if{ val == HIGH)
delayval = 1606;

delayval = 160;

digitalWirite{ledPin, HIGH);
delay{delayval };
digitalWrite{ledPin, LOW);
delay{delayval };

nt ledPin = 13; // choose the pin for the LED

e input pin (for a pushbutton)
for reading the pin status

/ declare LED as output

'/ declare pushbutton as input

'/ read input value

/ blini

the LED and go OFF

T +5V

Same sub-circuit,
just duplicate

Multiple Switches

220
pln 13 VAVA'A'A
+5V
10k
pin7|
piné
switch

e
i

+5V

switch

LED

9/1/10

9/1/10

Make Your Own
Switches

Anything that makes a connection
® Wires, tin folil, tinfoil balls, ball bearings
® Pennies!

e Nails, bolts, screws

® Or repurpose these tiny switches as bump
detectors or closure detectors

s A AR

Make Your Own Switches

Analog Input
To computers, analog is chunky

digitized point
voltage analog igitized poin
lb signal

digitized signal

sampled
point

Analog Input

® Many states, not just two (HIGH/LOW)
® Number of states (or “bins”) is resolution

e Common computer resolutions:

® 8-bit = 256 states
® |6-bit = 65,536 states
® 32-bit = 4,294,967,296 states digitized point

voltage T:];:l‘:%

digitized signal
o1
1
1
1
1

sampled
point

time

9/1/10

Analog Input on Arduino

O Our version uses ATMega328p
O six ADC inputs (Analog to Digital Converter)
O Voltage range is 0-5v
© Resolution is 10 bits (digital values between 0-1023)
)

In other words, 5/1024 — 4.8mV is the smallest voltage
change you can measure

O analogRead(pin);
© reads an analog pin
O returns a digital value
between 0-1023 : {
O analog pins need no = Qag
pinMode declaration . ¢

Test LED Arduino

onpin 13

power

LED

Analog Input

Sure sure, but how to make a varying voltage!?

With a potentiometer. Or just pot.
+5V

10k
potentiometer

measure here O——

+5V-
measure—

9/1/10

Potentiometers

Moving the knob is like moving
where the arrow taps the voltage on the resistor

turned turned somewhere
anti-clockwise A ,5v clockwise +5V in the +5V
middle

5 volts O—>

Bt 2.3 volts O—>
volts O—>

gnd gnd gnd

Red toVcc
Purple to AO

Blue to Gnd

9/1/10

10

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; /] select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:
/I Note that you don’t need to declare the Analog pin — it's always input

}

void loop() {
sensorValue = analogRead(sensorPin); // read the value from the sensor:
digitalWrite(ledPin, HIGH); // turn the ledPin on
delay(sensorValue); // stop the program for <sensorValue> milliseconds:
digitalWrite(ledPin, LOW); // turn the ledPin off:
delay(sensorValue); // stop the program for for <sensorValue> milliseconds:

Moving on...

O Write a program to read an analog value from a pot
and use that value to control the brightness of an LED

© Fade the LED by turning the pot

o Useful function is
map(value, fromlow, fromhigh, tolow, tohigh);

y = map(x, 0, 1023, 50, 150); — Arduino

onpin 13

O Also remember
analog\Write(pin,value); Arduing” sy
6 PWM value from 0-255 E e ** puemilanove

9/1/10

11

potFade

int potPin = 0; / the analog input pin from the pot

int ledPin = 9; /I pin for LED (a PWM pin)

intval; Il Variable to hold pot value

void setup () {
pinMode(ledPin, OUTPUT); Il declare ledPin as output
pinMode(potPin, INPUT); /I potPin is in input

}

void loop() {
val = analogRead(potPin); /lread the value from the pot

val = map(val, 0, 1023, 100, 255); // map to reasonable values
analogWrite(ledPin, val);

What good are pots!?

® Anytime you need a ranged input

® (we're used to knobs)

® Measure rotational position

® steering wheel, etc.

® But more importantly for us, potentiometers
are a good example of a resistive sensor

9/1/10

12

Sensing the Dark

® Pots are example of a voltage divider
® Voltage divider splits a voltage in two

® Same as two resistors, but you can vary them

+5V +5V

Sensing the Dark:
Photocells

® aka. photoresistor, light-dependent resistor
® A variable resistor
® Brighter light == lower resistance

® Photocells you have range approx. 0-10k

@f:/;ocell

schematic symbol

9/1/10

13

Photocell Circuit

+5V

photocell & _"_\ s s s s IREEEE

pin A2

c.amvnnu\cpmgz_‘:' :9_2%
i m m == s\l u m == R
10k | m = = & = =% = » " == w
brown-black-orange % % %= & & = = = = = 'R .

" s s s s aumEm TR

S L E " E s

Photocell Arduino
Sketch

Can use as before, sketch “analog_read_led”

Change to 0
g] int potPin = 2;
int ledPin = 13;
int val = 8;

the potentiometer

coming from the sensor

void setup()
pmncﬂe(ledpin, OUTPUT); // declare the ledPin as an OUTPUT

void loop() {
val = analogRead(potPin);
digitalWrite(ledPin, HIGH);
delay(val);
digitalWrite(ledPin, LOW); //
delay(val);

}

Wave your hand over it = blink faster
Point it towards the light = blink slower

9/1/10

14

Moving on...

O Connect a photocell instead of a pot to your fading circuit
© Do you get the same range

of fade as with the pot? Vcce
© Why or why not? 5V
pin AO
10k
gnd

Resistive sensors

\,_ circuit is the same
R for all these
5V
sensor
thermistor HEE
(temperature) resistor

. photocell
e (light)
(&) NT#
flex sensor
(bend, deflection)
force sensors ! also air pressure
(pressure) " and others

9/1/10

15

LED Brightness Functions

Then turn those numbers into an array

/¢ the table containing the "curve" the brighthess should toke
byte bright_table[] = { 38, 38, 38, 48, 5@, &8, 74, 38, 98,168,
114,128,130,148,158,168,176,156,198, 268,
218,228,230 ,248,260,250 ,240,230,228,218,
2eA,19a,150,178,168,15A8,140,138,128,114,
18, 98, 58, 78, o8, 5@, 48, 38, 38, 38 };
int max_count = 58; A7 number of entries in the bright_table

Use any pattern of numbers you like
but they must range between 0-255

0 = full off
127 = half on
255 = full on

LED Brightness Functions

Once you have your table...

v/ the table containing the "curve" the brightness should take
byte bright_table[] = { 30, 38, 38, 48, 58, 68, 78, 80, 90,1608,
116a,128,130,140,150,160,170,150,198 2608,
21@,22m,230,24A,250 250,240 ,2308,220,218,
2@a,19a,150,170,160,150,140,130,120,118,
1ea, 98, 8@, 78, 60, 58, 40, 38, 38, 38 };
int max_count = 5@; /¢ number of entries in the bright_table

...the rest is just programming

|. Getabright table value

2. Send it out with analogWrite ()

3. Advance counter into bright table
4. Wait a bit

5. Repeat

9/1/10

16

Glowing Eyes Sketch

int potPin = 83 ‘6 "
int ledPin = 18; led glOW
the table containing the ' e" the brightness should taoke

byte bright_ table[] = { 38, 3@ 3@ 48, sa &8, 78, 89, 99,160,
110,120,130,140,150,16@,174,180,190,208,
210,220,230 ,248,250 250,249, 230,220,218,
2A8,194,180,170,160,150,144,130,120,118,
100, 98, 89, 79, 60, 50, 49, 38, 38, 30 };

int max_count = 58; // number of entries in the bri w table
int count = B8; position within the bright_table
int val = 8; '/ variaoble for reading pin status
void setup() {

pintode(ledPin, OUTPUT); sets the digital pin as output
b

d l"u{)

Write{ledPin, hrlght. table[cuunt]), /¢ sets the LED br

es \H?r—' TO next positior 1n
17 { count = max_count)
count = @3 '/ if at end of table, b
val = analogRea 1(potP1n),
val = val/4; /¢ scale it down so it's quicker
w(val);
I

Communicating
with Others

® Arduino can use same USB cable for
programming and to talk with computers

® Talking to other devices uses the “Serial”
commands

® Serial.begin() — prepare to use serial
® Serial.print() - send data to computer

® Serial.read() - read data from computer

9/1/10

17

Serial from Arduino to PC

O Serial.begin(baud-rate);

O baud-rate is 300, 1200, 2400, 4800, 9600,
14400,19200, 28800, 57600, or 115200

O Sets serial bit rate

O Serial.print(arg);
O sends arg to the serial output — can be number or string
O Serial.print(arg,format); // formats the arg
O format can be BYTE, BIN, OCT, DEC, HEX

o Serial.printin(arg);
O Same, but also prints a newline to the output

Send data to PC

void setup() {
Serial.begin(9600); // init the serial port

}

void loop() {
Serial.printin("Hello World!"); // print to the screen!
delay(500); // Wait so you don’t print too fast

}

9/1/10

18

Checking on Analog Inputs

int sensorPin = 0; // select the input pin for the potentiometer
int ledPin = 13; /I select the pin for the LED
int sensorValue = 0; // variable to store the value coming from the sensor

void setup() {
pinMode(ledPin, OUTPUT); // declare the ledPin as an OUTPUT:

Serial.begin(9600); /I Init serial communication at 9600 baud

}

void loop() {
sensorValue = analogRead(sensorPin); // read the value from the sensor:
Serial.print(“Sensor value is: “); // print a message
Serial.printin(sensorValue, DEC); /[print the value you got
delay(500); // wait so you don’t print too much!

}

/l VERY useful for getting a feel for the range of values coming in
/I map(value, inLow, inHigh, outLow, outHigh);

Serial From PC to Arduino

O Serial.available();

O returns an int that tells you how many bytes remain in
the input buffer

O Serial.read();
O returns the next byte waiting in the input buffer

O Serial.flush();
O clear the input buffer of any remaining bytes

9/1/10

19

Serial Read Example

int incomingByte = 0; // for incoming serial data
void setup() {

Serial.begin(9600); // opens serial port, sets data rate to 9600 bps
}

void loop() { Il send data only when you receive data:
if (Serial.available() > 0) { // read the incoming byte:
incomingByte = Serial.read();

Il say what you got:
Serial.print("l received: ");
Serial.printin(incomingByte, DEC);

}

Arduino Says “Hi”

06 Arduino - 0010 Alpha

uSerialHelloWorld” |[CiC) =

int ledPin = 13; select the pin for the LED
int i=0; '/ sim nter W we're doi

1 setup() {

Sends “Hello world!” giisedeclobin M) 1 deckovs e E£D apin ae iy

to your computer

Click on “Serial digteaterits(isin, LOWY;
. de Loy (500);
Monitor” button to }
see OUtPUt
WatCh TX LED Compared Binary sketch size: 2546 bytes (of a 14336 byte maximum)
to pin |3 LED p

9/1/10

20

Telling Arduino What To Do

006 Arduino - 0010 Alpha

“SerialReadBasic” ®@ O

You type “H”, LED blinks

wsing LY Ok
atlable()) {

1l read(); read tt
H £ it

it val

digitaliy ‘r(leépm, HII;H);‘
de Ly (1990);
digitalWrite(ledPin, LOW);
. . }
In “Serial Monitor”, }
. .
type “H”, press Send S ————— >
19200 baud | H Send

Serial.available() tells
you if data present to read

Arduino Communications

is just serial communications

Psst, Arduino doesn’t really do USB

® |t really is “serial”, like old RS-232 serial

All microcontrollers can do serial

® Not many can do USB

® Serial is easy, USB is hard

=N

serial terminal from the olde days

9/1/10

21

Serial Communications

® “Serial” because data is broken down into bits, each
sent one after the other down a single wire.
® The single ASCII character ‘B’ is sent as:

‘B"” = 01000010
= LHLLLTLUHTL

® Toggle a pin to send data, just like blinking an LED

® You could implement sending serial data with digitalwrite()
and delay()

® A single data wire needed to send data. One other to receive.

Arduino & USB-to-serial

POLER Analog i

g sUuBNdSY @12345

9/1/10

22

Arduino Mini

Arduino Mini separates the two circuits

Arduino Mini USB adapter Arduino Mini

Arduino to Computer

USB to serial
chip

USB is totally optional for Arduino
But it makes things easier

9/1/10

23

Arduino & USB

® Since Arduino is all about serial
® And not USB,

® Interfacing to things like USB flash drives,
USB hard disks, USB webcams, etc. is not
possible

Controlling the Computer

® Can send sensor data from Arduino to
computer with Serial.print()

® There are many different variations to suite

your needs:
int val = 123;
Serial.print{val);

print{val,DEC); same as above

(val HEX)3 sends 2 ASCII chars
serial.print{val ,BIN); d ASCII
erial.print(val ,BYTE); is 1 byt

9/1/10

24

Controlling the Computer

You write one program on Arduino, one on the computer

In Arduino: read sensor, send data as byte

toop() {
val = analogRead{analogInput);
serial.print{val/4,BYTE);
(58);

In Processing: read the byte, do something with it

processing.serial .*;
|
Serial myPort;

setup() {
portname = "/dev/tty.usbserial-AS000Xve";
myPort = Serial(t , myPort, 9608);
1

draw() {
(myPort.available() = @) {
nt inByte = myPort.read();
tin{inByte);

p—

Controlling the Computer

® Receiving program on the computer can be
in any language that knows about serial
ports

® C/C++, Perl, PHP, Java, Max/MSP,
Python, Visual Basic, etc.

® Pick your favorite one, write some code for
Arduino to control

9/1/10

25

Controlling Arduino, Again

006 Arduino - 0010 Alpha

@@ E Serial Monitor

#“SerialReadBlink”

oid loop () {
Type a number |_9 val = Lenc read(); read the ser

and LED blinks that G R s gl o mlaiatkane, Ritk trie LD Sl

val = val - '8'; convert from character t imber

many times eaeial print mCbLinkd 3
digitalWrite(ledPin,HIGH);
deloy(15@);

digitaliirite(ledPin, LOW);

Converts typed ASCII value g
into usable number

19200 baud | 3

Most control issues are
data conversion issues

Ctrl Dec Hex Char Code Dec Hex Char Dec Hex Char Dec Hex Char

~@| o |00 NUL | [32 |20 64 |40 | @ % |60 | *

~a | 1 |o1 soH | [33 |21 | ! 65 |41 | A 97|61 | a

~8 | 2 |02 STX | [34 |22 | = 6 |42 | B |62 | b

~c | 3 |o3 eTx | |35 |23 | H 67 |43 | C 99|63 | C

~D | 4 |04 goT | [36 |24 | $ es |44 | D 100 |64 | d

~E | 5 |os enQ | |37 |25 | % 69 |45 | E 101 |65 | e

~F | 6 |06 ack | [38 |26 | & 70 |46 | F 102 |66 | f ASCII codes

~e | 7 |o7 BEL | |39 |27 (71 |47 | G 103 |67 |9

~H | 8 |08 8s 40 |28 72 |48 | H 104 |68 | h

At | o |os ar | e |20 |) 73 |as | I |05 |es | i Standard byte codes for

AJ 10 0A LF 42 2A * 74 4A J 106 | 6A] Characters

~k |11 | o8B VT 43 |28 |+ 75 |48 | K 107 |68 | k

AL |12 |oc FF 44 |2c | 76 |4ac | L 108 |6c | 1

AM |13 | oD CR 45 |20 | 77 | 4D le 109 6D | M Mysterious val = val — ‘0’;
AN |14 | 0E) 46 |28 | * 78 |4 110 [6E [N

~o |15 | oF ot | lar |20 |7 |5 lar |0 ||iz:ler |0 statement converts the byte
~p |16 |10 oLe | |48 |30 g 80 |so E 11270 | P that represents the character
~Q 17 |11 oct | 49 |31 81 |51 113 |71 [Q

~R |18 |12 pc2 | [so |32 |2 s2 [s2 | R 11472 | r to a byte of that number

~s 19 |13 ocs | [st |33 |3 83 [s3 | S 115 (73 | S

N ol oca | |52 |34 | & |84 |54 | T |Jue |74 |t For example, if the character
AU |21 |15 Nak | [s3 |35 | S 85 |ss | U 117 |75 |u N 4 i

~v |22 |16 SYN s4 |36 | 6 s6 |s6 | Y 118 [76 | Vv is ‘3 4 the ASCII code is 51
Aw |23 |17 ETB | |55 |37 g 87 [s7 | W 119 (77 [w

~x |24 |18 cAN | [s6 |38 ss |ss | K 120 |78 | X e

ay |25 | 10 em |57 |30 |9 |lso |se | ¥ ||121]7s |y The ASCII code for ‘0’ is 48
~z |26 | 1A sue | [s8 |3a | : 90 |sa | Z 122 |78 | 2

AL |27 | 1B esc | |59 |38 | o1 |s8 | [123 |78 | { =

~\ |28 | 1c Fs 60 |3c [< 92 [sc |\ 124 |7¢ | | So,51-48=3

~] 29 | 1D Gs 61 |30 [= 93 |so |] 125 |70 |}

An |30 |1E | &4 |Rs 62 |3 [> 94 |sE | ~ 126 |7 | ~ .

mo o Lar Iy lus les 12 12 [les o | [l loe | This converts the character

U
3’ into the number 3
" ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS).

The DEL code can be generated by the CTRL + BKSP key.

9/1/10

26

9/1/10

Reading Serial Strings

® The function
“serial.available()”

makes reading strings :
easier readSerialString {char *strArray) {

ti=0;
('Serial.available)) {
® Can use it to read all)

: : (serial.available()) {
available serial data from e ook e B 8
computer g

L strarray[i] = 83

1
L

® The‘“readserialsString()”
function at right takes a
character string and sticks
available serial data into it

Moving on... Servos

O Servo motors are small DC motors that have a range
of motion of 0-180°

Internal feedback and gearing to make it work
easy three-wire interface

position is controlled by PWM signals

27

PWM

Output voltage is averaged from on vs. off time

output_voltage = (on_time / off_time) * max_voltage

------------------- UUL+ 3.75 Volts
0 volts

5% 25% 75% 25% 75% 25%

5 volts

--------------- l{ seeefeeeeeeepeeeeee4 2.6 Volts

50% 50% 50% 50% 50% 50%

5 volts _‘ H
Ovolts g e

20% 80% 20% 80% 20% 80%

0 volts

1 1.0 Volts

PWM

® Used everywhere

® |amp dimmers, motor
speed control, power
supplies, noise making

® Three characteristics of
PWM signals

® Pulse width range (min/max)

width

® Pulse period height
(= l/pulses per second)

® Voltage levels period
(0-5V, for instance)

_

9/1/10

28

Servomotors

® Can be positioned
from 0-180° (usually

® [nternal feedback
circuitry & gearing
takes care of the
hard stuff

® Easy three-wire
PWM 5V interface

Servos are Awesome

e DC motor
e High-torque gearing

e Potentiometer to
read position

® Feedback circuitry to
read pot and control
motor

® All built in, you just
feed it a PWM signal

9/1/10

29

Servos, good for what!?

® Roboticists, movie effects people, and
puppeteers use them extensively

® Any time you need controlled, repeatable
motion

® Can turn rotation into linear movement
with clever mechanical levers

Servos

® Come in all sizes

® from super-tiny 9%

® to drive-your-car

e But all have the same et
3-wire interface

-

® Servos are specd by:
weight: 9g | 57g

speed: .12s/60deg @ 6V
torque: 220z/1.5kg @ 6V

voltage: 4.6—-6V (R

size: 21x11x28 mm &;37
Our servos are: weight: 9g,
speed 0.12s/60deg at 4.8v,

torque (@4.8v) 17.50z/in (1kg/cm)
voltage range: 3.0 — 7.2v

9/1/10

30

Servo Mounts & Linkages

Lots of ways to mount a servo

And turn its rotational motion
into other types of motion

Servo Control

Ground (0V)
Power (+5V)

l Control (PWM)

® PWM freq is 50 Hz (i.e. every 20 millisecs)
® Pulse width ranges from | to 2 millisecs
® | millisec = full anti-clockwise position

® 2 millisec = full clockwise position

9/1/10

31

Servo Movement

0 degrees 90 degrees 80 degrees

1000 microsecs 1500 microsecs 2000 microsecs

In practice, pulse range can range from 500 to 2500 microsecs

Servo and Arduino

First,add some jumper wires to the servo connector

9/1/10

32

Servo Example Program

#include <Servo.h> Il'include the built-in servo library
Servo myservo; // create a servo object to control the servo (one per servo)
int pos = 0; Il variable to store the servo position
void setup() {
myservo.attach(9); I/ attach servo control to pin 9
}
void loop() {
for (pos = 0; pos < 180; pos++){ // go from 0 to 180 degrees
myservo.write(pos); /' move the servo
} delay(15);l I give it time to get there

for (pos = 180; pos>=1; pos--) { // wave backwards
myservo.write(pos);
delay(15);

Servo Functions

O Servo is a class
O Servo myservo; // creates an instance of that class

O myservo.attach(pin);
O attach to an output pin (doesn’t need to be PWM pin!)
© Servo library can control up to 12 servos on our boards

© but a side effect is that it disables the PWM on pins 9
and 10

O myservo.write(pos);
O moves servo — pos ranges from 0-180

O myservo.read();
© returns the current position of the servo (0-180)

9/1/10

33

Moving on...

O Write a program to control the position of the servo from a
pot, or from a photocell

remember pot analogRead(); values are from 0-1023

measure the range of values coming out of the photocell
first?

use Serial.prini(val); for example
use map(val, in1, in2, 0, 180); to map in1-in2 values to 0-180

Can also use constrain(val, 0, 180);

Side Note - Power

O Servos can consume a bit of power

We need to make sure that we don’t draw so much
power out of the Arduino that it fizzles

If you drive more than a couple servos, you probably
should put the servo power pins on a separate power
supply from the Arduino

Use a wall-wart 5v DC supply, for example

9/1/10

34

9/1/10

Servo/Light Assignment

O Use a photocell on the input Ve
O put in series with 10k ohm resistor +5V

O use a servo on the output
© connect to a PWM pin

O make the servo do somethingin ~ pin AO
response to the amount of light 10k
falling on the photocell

Ground (0V) gnd
Power (+5V)

| Control (PWM)

35

Summary — Whew!

O LEDs — use current limiting resistors (remember color code!)
drive from digitalWrite(pin,val); for on/off
drive from analogWrite(pin,val); for PWM dimming (values from 0-255)

O buttons — current limiting resistors again
active-high or active low (pullup or pulldown)
read with digitalRead(pin);

O potentiometers (pots)— voltage dividers with a knob
use with analogRead(pin); for values from 0-1023

Summary — Whew!

O photocells — variable resistors

use with current-limiting resistors (to make voltage divider)

O Serial communications — read a byte, or write a value

communicate to the Arduino enviroment, or your own program

O Servos — use Servo library to control motion
might need external power supply
range of motion 0-180°

O Also setup() and loop() functions, and various C programming ideas

9/1/10

36

DC Motors More Later- o

use transistors as switches for larger current loads

Stepper motors
Sort of like servos, but with continuous range of motion
Can also be more powerful

12C serial bus
Various LED driver chips

other serially-controlled devices

Piezo buzzers
make some noise!

But you can also use them as input devices to sense movement

IR motion sensors

simple motion and also distance sensors

Accelerometers

Wii nunchucks, for example

Others?

9/1/10

37

