10/20/10

‘e

* . Interfacing with other chips

Examples of three LED driver chips

Why Add Other Chips!

O Lots of cool chips out there that add functionality
beyond a basic Arduino

O One example - LEDs

From an Arduino you can drive 14 LEDs directly from
the digital outs - what if you want more?

Use external LED-driver chip
Send data on which LEDs to turn on and of to that chip
Let it keep track of the LEDs while you do other things

10/20/10

Communication Styles

Parallel = multiple wires in parallel l l
Serial = send data one at a time

on one wire

© In practice you usually need two wires:

one for the data, and one to say when to
look at the data (usually called Clock)

So, serial communication takes more
time, but uses fewer wires

Shifting

O Shifting is the process of sending out a set of bits one

at a time

——
—
r—

Shifting

O Shifting is the process of sending out a set of bits one

at a time

0000000 -

Shifting

O Shifting is the process of sending out a set of bits one

at a time

—0200000 -

(3]

10/20/10

Shifting

O Shifting is the process of sending out a set of bits one

at a time

—00000

Shifting

O There are a couple other control signals too...

En

Data

Clk

10/20/10

There are a number of different protocols used for
inter-chip communication (Arduino to external chip...)

(

O

O

Overview

Serial output - simplest protocol.

O Also called SPI - Serial Peripheral Interface

0O CLK/Data/En, unidirectional
O Example: STPOSDPO5 8-bit LED driver

SPI with more complex operation

0O Send data with SPI, both commands and data
O Example: MAX 7219 8-digit LED display driver

[*C/TWI - two-wire interface - more complex

O CLK/Data - bidirectional
O Example: Wii Nunchuck
Custom protocols - potentially complex

O Example: TLC5940 16-bit PWM LED driver

Figure 4: Microwire Protocol

Clock

Serial Output

O Two pins: Clk and Data

1

O
(

O

New data presented at Data pin on every clock

Looks like a shift register

3

|
|
|
[N

|
| 2
[
|

	[[
L K 1 KX) ST G (TR								
	I							
/cs	‘1							
O Xt 1 1 1 L								
		\\l						
st Data lofched I5:): Dala changes
(shifted In) (shiffied ouf)
on fising on falling
clock edge clock edge

|
|
|
Data MSB
T
I\

|
|
|
X
|
|

10/20/10

10/20/10

Example: Shift Register

O Simply connect LEDs to the outputs of the shift register

O The only problem is that the LED pattern changes while you’re
shifting it in...

GND

—00000 > 80000000

Arduino External shift register

Shifter with Output Latch

O One solution is to save the current outputs while you're
shifting in the new ones
O This is an “output latch”
O Shift in new stuff “underneath” the bits that are being
displayed
O Then, all at once, swap the new bits for the old bits

Shifting w/Latch

O latch when LE goes high

O Outputs enabled when OE is low

Arduino

Svell) Mo External Chip

Oov =

Data

» LE (Latch Enable)

Shifting w/Latch

O latch when LE goes high

O Outputs enabled when OE is low

Arduino

*5v o= o oE External Chip

Data

» LE (Latch Enable)

10/20/10

Example: 74HC595

O This is a shift register with an output
latch

O You can save the previous values
while shifting in new ones

O BUT - need separate current-
limiting resistor for each LED!

afO0 |Ewe
a2[2] [15] Q0
Q33| [14] oS
_— 595 2] oF
a5[5] [12] sT_CP
a6 [6 | [11] sH_cP
a7 [7] [10] MR

GND[8| [9]ar

MLACOT

DS

SH_CP

MR

8-STAGE SHIFT REGISTER

HEEENER=

ST_CP

8-BIT STORAGE REGISTER

HRENEEE

3-STATE OUTPUTS

15

QIRIBIRIBIRI2|8

MLAOO3

Example: STPOSDPO5

O Just like the 74HC595 - a shift register with a separate

output latch

O ALSO - constant-current outputs for the LEDs

O That means the outputs limit the current for you

O You set the output current with a single resistor for all 8

outputs

O Only one resistor for 8 LEDs!

10/20/10

Example: STPOSDPO5

Figure 2. Normal mode - block diagra

m

ouTO

R—-EXT _I

ouTé

=

ouT7

Voo
uvLo o

R

I-REG 8+

| Open/Short circuit detector

I Thermal
Shutdown

OE\DM2

Output Enable

Control
Logic

LE\DM1
Rl

8X Data Latch

SDI [:

8X Shift Latch

SDO

CLK [

SDI/CLK shifts
data into the 8-bit
shift-register

LE moves data to
the “data latch” so
that it can be seen
on the output

OE controls
whether the data
is enabled to drive
the outputs

R-EXT sets the
current for each
output

Constant Current Source

O Note that the constant current source only pulls to ground

© So - LEDs connect to vdd...

R—-EXT

+5v

TPTJT

ouT7

&

I-REG 8+
I

10/20/10

10/20/10

Example: STPOSDPO5

Figure 7. Timing diagram - normal mode Timing diagram shows
shifting data in, one bit
1 2 3 7 8 9 10 1 per clock

HIGH
S [[I
so! 1 /J] :LGH Data is transferred to

output register on a

HIGH .
LE/DM1 hl h LE
/ . g
0E/DM2 HiH
/ ov Data shows up only
o ;
oo N when OE is low
OFF
ON \: .
OUTsfviby This means you can dim

o1 all 8 LEDs using PWM
oFF on the OE signal

ON

OFF
HIGH

wo s o ov

out2

our7

Arduino Code

O Arduino has a builtin function to shift data out for
devices like this

Syntax
shiftOut(dataPin, clockPin, bitOrder, value)
Parameters

dataPin: the pin on which to output each bit (int)
clockPin: the pin to toggle once the dataPin has been set to the correct value (int)

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.
(Most Significant Bit First, or, Least Significant Bit First)

value: the data to shift out. (byte)
Returns

None

10

Arduino Code

void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, byte val)
{inti;
for (i=0;i<8;i++) {
if (bitOrder == LSBFIRST)
digitalWrite(dataPin, !!(val & (1 <<i)));
else
digitalWrite(dataPin, !'(val & (1 << (7 -))));

digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);

}

Arduino Code (74HC595)

int latchPin = 8; //Pin connected to ST_CP of 74HC595
int clockPin = 12; //Pin connected to SH_CP of 74HC595
int dataPin = 11; //Pin connected to DS of 74HC595

void setup() { //set pins to output because they are addressed in the main loop pinMode
(latchPin, OUTPUT);

pinMode(clockPin, OUTPUT);

pinMode(dataPin, OUTPUT);}

void loop() { //count up routine
for (intj = 0; j < 256; j++) {

//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, j); // shift out the value of j

//return the latch pin high to signal chip that it
//no longer needs to listen for information

digitalWrite(latchPin, HIGH);

delay(1000); }}

10/20/10

11

Arduino Code (STPOSDPO5)

int latchPin = 8; //Pin connected to LE of STPOSDPO05
int clockPin = 12; //Pin connected to CLK of STPOSDPO05
int dataPin = 11; //Pin connected to SDI of STPOSDPO05
Int OEPin = 10; //Pin connected to OEbar of STPOSDPO05

void setup() { //set pins to output because they are addressed in the main loop

pinMode(latchPin, OUTPUT);

pinMode(clockPin, OUTPUT);

pinMode(dataPin, OUTPUT);
pinMode(OEPin, OUTPUT);}

void loop() { //count up routine
for (intj = 0;j < 256; j++) {
//ground latchPin and hold low for as long as you are transmitting, OE pin is high...

digital Write(latchPin, LOW);

shiftOut(dataPin, clockPin, LSBFIRST, j);

digital Write(OEPin, HIGH);

//return the latch pin high transfer data to output latch, OE low to light the LEDs

digitalWrite(latchPin, HIGH); digitalWrite(OEPin, LOW);

delay(1000); }}

Chaining Multiple Chips

Figure 2. Normal mode - block diagram

Figure 2. Normal mode - block

ouTO

R-EXT _I
CAR.

ouTé ouT7

= L Ll

I-REG 8+

| Open/Short circuit detector |

Thermal
Shutdown

OE\DM2

Output Enable

Control
Logic

LE\DM1
iy

8X Data Latch |

SDI [:

8X Shift Latch

|
l—s%o

CLK [:

R—-EXT

|

OE\DM2

LE\DM1 [
soI [|:
CLK [

Control
Logic

10/20/10

12

Choosing a Resistor

Figure 11. Output current-Rgxr resistor

O Ichose a 2k

ohm resistor 8000

7000

for around co00

10ma

5000
4000

Rext (Ohm)

3000

2000

1000

Ml HeHHHHH

0 1 H iH 581!
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140
Ouput Current (mA)

Ta=25°C, Vdrop=0.3V; 1.2V, Iset =3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 80 mA,

Max

Table 10. Output current-Rgxr resistor

Output current (mA) 3 5 10 20 50 80

130

Rext (Q) 6740 3930 1913 963 386 241

124

Maximum output current capabilities setting was 130 mA applyingan Rext = 124 @

STPOSDPO5 Summary

O Easy chip to use
O Use ShiftOut(...) to shift data to the chip
© Can chain many together to drive lots of LEDs

O Just four wires from Arduino to external chip drives 8 LEDs
o Clk and Data used to shiftOut() the data
O LE goes high to capture the data
O OE goes low to make the data appear (or for PWM)

O Constant-current drivers so only one resistor per chip
© Simple on or off for each LED

10/20/10

13

SPI Interface

O Serial Peripheral Interface
O Generalized version of previous example
O “official” version has bidirectional data - you can read

back data from the other device at the same time as
you're sending

© But, you can ignore that and use the same ShiftOut
function if you like

Slave
Device #1

10/20/10

14

Example: MC14489

O Designed to drive 5-digit 7-segment display

O Cycles through each digit automatically
O Could also drive 20 individual LEDs

+5V
t MC144898 a
Vb b
Vss ¢
I d 8
- e 8 8 8 8 8
f
OPTIONAL —| DATA OUT g a
v [T |B|B|B|B|8;
t e . . . J| el
d h
= 5 # F3) # #
CMOS DATAIN BANKS
BANK 4
MCUMPU
CLock BANK3
ENABLE BANK 2
J_ BANK 1
Example: = e
Lamp Conditions
No Dccodo@
M 7-Segment Display (Invoked via
Bank Nibble Value Characters Bits C1t0 C7)
Special
Hex Decode Decode
3 > Binary (Invoked via (Invoked via
®) Send in four blts Hexadecimal [MSB LSB | Bits C1t0C5) | BitsC1t0C7) | d c b a
per digit o jLiie g
$1 LLLH / c on
gk e $2 LLHL I H on
O ree decoding h
d $3 L LHH 3 on | on
modes $4 LHL L Y J on
O Hex $5 LHLH 5 @ L on on
v $6 L HH L & M on | on
O Special 4
$7 L HH H i o on on on
o No Decode s8 HLLL 8 ® P on
$9 HLLH 3 @ r on on
$A HLHL lq U on on
$B HLHH b u on on | on
sC HHLL I Y on | on
$D HHLH a - on | on on
SE H HH L E = on on on
$F HHHH F o on on on on

10/20/10

15

MC 14489

35 [P —
_ 5V SUPPLY
g 5 BIT D23 = HIGH (BRIGHTEN LEDs)
= WITH D23 = LOW, igH IS CUT BY —50%.
E 2
3 N\
PIN ASSIGNMENT S N
S N
1t 1o 2[4 x 5 \\
&
ef] 2 19[n = ~—_
=] [~
Vool 3 18 [1 DATA OUT = 10
df 4 17 [] BANK 5
[
cls 16 {1 BANK 4 400 800 12k 16k 20k 24k 28k 32k 36k 40k
bl 6 15 1] BANK S R, EXTERNAL RESISTOR (Q)
all 7 14 [Vgg
axl] 8 13 [] BANK 2
BANK1[] 9 12 [] DATA N
ENABLEQ 10 1 [] CLOCK

E—m—l |7 Use shiftOut to send data to the chip

cLock)R IE] el one-byte = command byte three bytes = data
s 158

DATAN %mﬁc&ﬁcsﬁuﬁcaHmHmHmV
L ¢-Lowroweanoo (BLANKS THE DISPLAY), FORCED LOW (L) BY POWER ON RESET
H=NORMAL MODE
CONTROLS BANK 1: L= HEX DECODE, H=DEPENDSONC6—) NOTE: The low—power (standby) mode places the device

CONTROLS BANK 2 L = HEX DECODE, H=DEPENDSONC6— in a static state, thus eliminating EMI and mux switching

CONTROLS BANK 3: L = HEX DECODE, H=DEPENDSONC6—{ noise. Therefore, during precision analog measurements,

.] the low—power mode could be invoked by a system’s MCU.

CONTROLS BANK 4: L = HEX DECODE, H = DEPENDS ON C7- Also, the low—power mode blanks the display, and could
CONTROLS BANK 5: L= HEX DECODE, H=DEPENDSONC7— be used to fiash the LEDs on and off.

L=NODECODE, H=SPECIAL DECODE (REFERTOC1,C2ANDCY)—————————————

L =NO DECODE, H = SPECIAL DECODE (REFER TO C4 AND C5) —————————— SEETABLE1

(@ Configuration Register Format (1 Byte)

x| [

CLooK 1| [2] (3] [¢] [s] [6] [7] [e] [o] [0] [u] [12] [1s] [we] [1s5] [6] [17] [e] [s] [20] [21] [22] [e8] [e
B 158
DATAN AmHmHm HlmﬁmsHmsﬁnwgmsHmusHmsHmzﬁon Hmoﬁ) H 08 H o7 H 0% H s H D4 H » H) H 01 H) W
LT T 7T T T 7 L T 7T T T 7T [T TT7
K5 BANK4 BANK3 BATIK2 BANK 1
NBaLE NB3LE NBaLE NB3LE NBBLE
L =ALLh OUTPUTS INACTIVE SEETABLET

H =ACTIVATE h IN BANK 1

L =ACTIVATE h IN BANK 2

H =ACTIVATE h IN BANK 3

L =ACTIVATE h INBANK & THE LSBs OF EACH BANK NIBBLE ARE D0, D4, D8, D12, AND D16.
H =ACTIVATE h IN BANK 5

L =ACTIVATE h IN BOTH BANKS 1AND 2

H H H =ACTIVATE h INALL BANKS

— L=DIMLEDs, H=BRIGHTEN LEDs

TTTr~r~r~r
Tr-rTxT~-

(b) Display Register Format (3 Bytes)

10/20/10

16

MC14489 Sumary

O Another convenient way to drive a bunch of LEDs

O

o

O

5-digits of 7-segment numbers

or 20 individual LEDs

LED:s should be “common cathode” type
O Anodes are the segments

O Cathodes are the digits

O Chip does the cycling between digits for you

O Single resistor sets current for all LEDs

O SPI interface (Clk, Dataln, Enable (active-low))
© Slightly funky interface - you send 1 or 3 bytes and the chip

figures out what you meant

o Different numbers of bytes for chips connected in series

notch

Aside: Vintage 7-seg displays

4

..
i

EgHOfRs DP-<Day "0

Table 6. No-Decode Mode Data Bits and

Corresponding Segment Lines

D

=]
FD . ﬂn
rl:f
11
| —

c

op

STANDARD 7-SEGMENT LED

¥y ¥

Common-Cathode LEDs
Vi = 1.6v

o~

REGISTER DATA

D7

D6

D5 (D4 | D3 | D2 | D1 | DO

Corresponding
Segment Line

DP

A

B|C| D E F |G

10/20/10

17

10/20/10

Example: MAX 7219

O Display driver for 8-digits of 7-segment numbers

O Can also be used for 8x8 array of LEDS
O (i.e. 64 individual LEDs)

O Drives common-cathode LED digits or LED matrix

O Cycles between each of 8 digits (or matrix rows) fast enough
so they all look ON

O SPl interface
O Slightly complicated command/data interface

O Send address of internal register followed by data

O Each SPI communication is 16 bits
O Luckily, there’s an Arduino library for the chip
Pin Configuration Typical Application Circuit
TOP VIEW \— P g
on[7] * [2¢] oout ‘.'8“‘.'.“:“.”.'_
0,000,0,0,0.0.0,
nio [2] 23] se6D | ‘ e
DG4 3] 2] seG 0P o
a0 (2| s |21] sice) 19
Des[5] MAX7219 |x] stac 9.33«18 b
062 5] MAX7221] v ser DIG 0-DIG 7
i MAXIAM | 8DIGTS
Dig3 [7] 18] IseT 1| o MAX7219
Mos! DN ot
D67 8] [17] ske 6 = o
w03 o) sesi w0 LOAD (C3)
50K 18] o1k SEGAG
0I5 [10] [15] seGF SEG DP
] P 8 SEGMENTS
nig 1 1] [14] stG A GND
LoAD (T3) [12] [13] cik |7—4£‘
() MAX7221 ONLY DIP/SO () MAX7221 ONLY 8-DIGIT P DISPLAY

Table 6. No-Decode Mode Data Bits and
Corresponding Segment Lines

| S
it
| |
L] e |
Ll |
— STANDARD 7-SEGMENT LED
1]
| |
I
J L
3 O
D 0P

REGISTER DATA
D7 | D6 | D5 | D4 | D3 | D2 | D1 | Do

Corresponding op| A B c D £ E G
Segment Line

18

Functional Diagram

SEG A-SEG G, DP DIG 0-DIG 7
SEGMENT DRIVERS DIGIT DRIVERS

Py
e

8 o [Sruroom regsTER — ‘
RS%% - T5| MODEREGISTER INTENSITY
BYPASS La-| INTENSITY REGISTER - Pl
Reer } Lo-| SCAN-LIMIT REGISTER MODULATOR
SEGMENT 8 || DISPLAY-TEST REGISTER
CURRENT &8
REFERENGE DUAL-PORT D[mureex
Sl ADDRESS R
IRCUITRY
‘af ,8 | REGISTER CIRCU
LOAD (CS) » DECODER

4

/\
oin »— Do 0102 03 04 D5 06 [07 [D8] Da [o10[D11[D12]D13[D14]D15] |— DOUT
o TTETTRETTRFTTFI]

() MAX7221 ONLY

"l“
i)

o o
o KRR - XXX XUHXX

[
— o -

pout >< :>< ><

Figure 1. Timing Diagram

Table 1. Serial-Data Format (16 Bits)

D15 | D14 | D13 | D12 D11|D10|D9|D8 D7|D6|D5|D4|D3|02|D1|Do

X X X X ADDRESS MSB DATA LSB

10/20/10

19

Table 2. Register Address Map

ADDRESS HEX
REGISTER —
D15~ | b1 | D10 | Do | D8 | CODE
D12
No-Op 0 0 0 0 0xX0
Digit 0 X 0 0 0 1 0xX1
Digit 1 X 0 0 1 0 0xX2
Digit 2 X 0 0 1 1 0xX3
Digit 3 X 0 1 0 0 0xX4
Digit 4 X 0 1 0 1 0xX5
Digit 5 X 0 1 1 0 0xX6
Digit 6 X 0 1| oxx7
Digit 7 X 1] 0] o] o] oxxs
Decode
Mode X 1 0 0 1 0xX9
Intensity X 1 1 0 OxXA
Scan Limit X 1 0 1 0xXB
Shutdown X 1 1 0 0 0xXC
Display X 1 1 1 1| oxxF
Test
SegDP SegA SegB SegC SegD SegE SegF SegG
— b . . . 3
Dig0 ao a1 az a3 a4 as ak ar
‘.,_ . ‘.,_ . .,_ b .,_ 3 .,_ 3 -,_ . b e 3
Dig1 11 8] 12 13 14 15 16 [k
._,_ . .,_ . .,_ b .,_ b .,_ 3 .,_ 3 .,_ ;. 3
Common-Cathode
Dig2 % 20 x 22 i 22 % 23 % 24 % 25 x 26 27 LED array
I . . . b = I . . 3
Dig3 a0 a1 3z 33 34 as £ ar
‘_‘_ . ._‘_ b .‘_ 3 .‘_ ; ..‘_ 3 ..‘_, T b oiass 3
Dig4 40 41 42 43 44 45 45 a7
—,_ . .,_ . .,_ . .,_ . ._._ . .,_ 3 .,_ ;. 3
Digs 0 51 52 53 54 > 2 55 6 57
-4— -.— .-.— v-.— J— 4 -4— 4 -.._ o 4
DigS 60 61 62 63 G4 65 66 67
Dig7 70 7 12 73 T4 s e T

Led Matrix 8x8

10/20/10

20

MAX 7219

On the one hand - just like MC14489

On the other hand, more complex internal structure
> Each SPI transfer needs to be 16 bits - address/data

Two Arduino libraries available
O Matrix - built-in to Arduino environment

O LedControl - download from Playground - more
complex control

Matrix Library

Matrix

Class for manipulating LED matrix
displays connected to the Wiring I/O
board.

vrite(

Write data to the display.

Set the brighness of the screen.

10/20/10

21

J Examples #include <Binary.h>
Matr].X #include <Sprite.h>
#include <Matrix.h>
Librar Matrix myMatrix = Matrix(0, 2, 1);
b | ,
void setup()
y
O Matrix object is }
defined with void loop()
Clk, Data, and { . o :
) myMatrix.clear(); // clear displ
Latch pins
delay(1000);
turn some pixels on
myMatrix.wri to(‘, 5, HIGH);
7 (2, 2, HIGH);
(2, 6, HIGH);
(3, 6, HIGH);
(4, 6, HIGH);
(5, 2, HIGH);
(5, 6, HIGH);
(6, 5, HIGH);
}

a

y

LedControl Library

O Support for more than one MAX 7219
O Support for numbers and letters on 7-segment displays

O Support for rows and columns in an 8x8 matrix

10/20/10

22

LedControl Library

[* We start by including the library */
#include "LedControl.h”

* Make a new instance of an LedControl object
* Params :
*int dataPin The pin on the Arduino where data gets shifted out (Din on MAX)
*int clockPin The pin for the clock (CLK on MAX)
*intcsPin The pin for enabling the device (LD/CS on MAX)
* int numDevices The maximum number of devices that can be controlled
)
LedControl Ic1=LedControl(12,11,10,1);

LedControl Library

void clearDisplay(int addr);

void setLed(int addr, int row, int col, boolean state);
void setRow(int addr, int row, byte value);

void setColumn(int addr, int col, byte value);

void setDigit(int addr, int digit, byte value, boolean dp);
void setChar(int addr, int digit, char value, boolean dp);

/*

* Display a character on a 7-Segment display.

* There are only a few characters that make sense here :
01234 56 T 8 0

N dUEVE U H P

i

10/20/10

23

LedControl Library

Ilinclude this file so we can write down a byte in binary encoding
#include <binary.h>

IInow setting the leds in the sixth column on the first device is easy
Ic.setColumn(0,5,800001111);

IInow setting the leds from the third row on the first device is easy
Ic.setRow(0,2,810110000);

/Iswitch on the led in the 3'rd row 8'th column
/land remember that indices start at 0!
Ic.setLed(0,2,7,true);

/ILed at row 0 second from left too
Ic.setlLed(0,0,1,false);

MAX 7219 - Setting Resistor

O This resistor goes to Vdd, NOT GND!

Sets current for each segment (LED)

SEGMENT DRIVER OUTPUT CURRENT
TR AT Table 11. RSET vs. Segment Current and

n \ = LED Forward Voltage

&

N g * Vieo (V)
= N s =10k I A LED
e < SEG(MA) 5 T 20 [25 | a0 | 35
=) =
g . 40 122 | 118 | 110 | 106 | 969
5 ¥ = 30 178 | 174 | 158 | 150 | 140
5 =~
3 2 o gag-oa T 20 208 | 280 | 259 | 245 | 226
10 = 10 667 | 637 | 593 | 554 [512
0

0 1 2 3 4 5

OUTPUT VOLTAGE (V)

These values are in kOhms!!!

10/20/10

24

Multiple MAX chips

DATAIN -

tre

?

(NN

l
Jnnuaauaw
I | |

LOAD DATA »- f

CLOCK -

8 8
DoUT DIN DOUT
st6D |- o 0G0 SEGD
eGP 1o oG4 SEG DP
SEGE|-o GND SEGE
6 - v Pl SEGC %
Vs \ — {062 Vs
ISET ——/\/\/\/—T 0F) o Xpig3 ISET
s e 953k Q; o7 SEGG 9.53kQ2
SEGB |-o GND SEGB
SEGF |-o —L oJ0is SEGF
SEGA |- MMM - et SEGA | AMMAAM
ot e o i

v

0.1uF

Multiple MAX Chips

O There is an important difference between the way the
setRow() and the setColumn() methods update the

Leds:

O setRow() only needs to send a single intvalue to the

MAX72XX in order to update all 8 Leds in a row.

O setColumn() uses the setLed(}-method internally to
update the Leds. The library has to send 8 ints to the
driver, so there is a performance penalty when using
setColumn().

O You won't notice that visually when using only 1 or 2
cascaded Led-boards, but if you have a long queue of
devices (6..8) which all have to be updated at the same
time, that could lead to some delay that is actually
visible.

10/20/10

25

MAX 7219 Summary

O Drives more LEDs than the STPOSDPO5 or MC 14489
O Similar to MC14489, but for 8 digits or 64 LEDs

Designed for common-cathode LED arrays
O Set the anodes to true and false

O Pull down the cathodes in sequence

Uses time-multiplexing to drive them all
Also supports 7-segment displays

Slightly more complex interface

Atmel SPI Support

O The Atmel ATMega328 chip supports hardware-
controlled SPI
Could be faster than ShiftOut function
Uses built-in SPI register on ATMega328

O Set up the SPI functionality by setting bits in a control
register

O Write data to the SPI output register (MOSI) which causes
the transfer to happen

O A bit gets set in the control register when it’s done

10/20/10

26

10/20/10

Atmel SPI Support

Figure 18-1. SPI Block Diagram(")

*—S
M -N
M
e MSB_________LsB 2
8 BIT SHIFT REGISTER 8
READ DATA BUFFER 2
DIVIDER 3
12/4/8/16/32/64/128 g
in — | 8
(8]
C =z
SPI CLOCK (MASTER CLOCK z
SELECT CLOCK s po—
LOGIC "
o o
=lw| €
25 8
MSTR
‘ SPI CONTROL | E
I
- o
58 2 el Bl E e
A5 | 11113 5 5 2 2 8 & § §
SPI STATUS REGISTER SPI CONTROL REGISTER
8 8 I

SPIINTERRUPT INTERNAL
EQUEST DATA BUS

27

SPI library setup

Spi Library

This library provides functions for transferring information using the Serial
Peripheral Interface (SPI). The SPI interface is automatically initialized when the
Spi library is included in a sketch. It sets the following digital I/O pins:

pin 13 SCK
pin 12 MISO
pin 11 MOSI
pin 10 SS

SPI clock

SPI master in, slave out
SPI master out, slave in
SPI slave select

The default SPI configuation is as follows:

SPI Master enabled
MSB of the data byte transmitted first
SPI mode 0 (CPOL = 0, CPHA = 0)

& SPI clock frequency = system clock / 4

mode(byte config)

Sets the SPI configuration register. Only required if the default
configuration described above must be modified. The SPE (SPI enabled)
and MSTR (SPI master) bits are always set. If there are multiple SPI
devices on the bus which require different SPI configurations, this function
can be called before accessing each different device type to set the
appropriate configuration.

Example:

Spi.mode((1<<CPOL) | (1 << CPHA)); // set SPI mode 3

or
Spi.mode((<<SPRO));

byte transfer(byte b)

Sends and receives a byte from the SPI bus.

Example:

n = Spi.transfer(0x2A);

byte transfer(byte b, byte delay)
Delays for a number of microseconds, then sends and receives a byte from
the SPI bus. This function is used if there are timing considerations
associated with the data transfer.

Example:

n = Spi.transfer(0x2A, 2); // waits 2 usec, then sends the by

// set SPI clock to system clock /

// sends the byte 0x2A
// and returns the byte received

// and returns the byte received

10/20/10

28

Transfer a byte using SPI

nsfer(volatile char data)

SPDR = data; // Start the transmission

while (!(SPSR & (1<<SPIF))) // Wait for the end of the transmission
{

i

return SPDR; // return the received byte

Magic stuff happens here: By writing data to the SPDR register, the SPI transfer is
Started. When the transfer is complete, the system raises the SPIF bit in the SPSR
Status register. The data that comes back from the slave is in SPDR when you're
Finished.

SPI Details

18.5.1 SPCR - SPI Control Register

Bit 7 5 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE_| DD_RD_|_MSTH T chL T CFEA [_sei_sPro SPCR
Read/Write RIW RIW RW RW AW AW RW RW

Initial Value 0 0 [0 0 0 0 0

* Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

* Bit 5 - DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SP| mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

10/20/10

29

SPI Details

* Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is sum-
marized below:

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

¢ Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL
functionality is summarized below:

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

SPI Details

* Bits 1,0 - SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f,. is
shown in the following table:

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency

0 0 0 fosdld

0 0 1 fosc/16

0 1 0 f oo/64

0 1 1 fosc/128

1 0 0 foe/2

1 0 1 fo/8

1 1 0 f /32

1 1 1 fo/64

10/20/10

30

10/20/10

SPI Details

SPSR - SPI Status Register

Bit 7 6 5 4 3 2 1 0
o@D (0xD) [SPE] WCOL | = =] sPex] sesm
ReadWiite R R R R R R R AW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR s set and global interrupts are enabled. If SSis an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

* Bit 6 - WCOL: Write COLlIision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 18-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f . /4
or lower.

SPI Summary

O Very general way to send serial information from
Arduino to another chip

O DIY version: ShiftOut

Fancy version: SPI library

Both do pretty much the same thing

Make sure your chip “speaks” SPI

If it “speaks” I2C, a whole different ball of wax...

DE Qi DAD)

31

[2C - a.k.a. TWI

O Uses only two wires to communicate

O Simpler?
O Each wire is bidirectional
O Can address up to 128 devices on a single 12C bus

O Actually more complex...

12C = aka "W

21.2 2-wire Serial Interface Bus Definition
The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

cc

Device 1 Device 2 Device 3 | Device n

=
o
N

SDA = >

SCL

A
\J

10/20/10

32

21.2 2-wire Serial Interface Bus Definition

1.8k, 4.7k. 10k are

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

commonly used «

pullup resistor values

The wire library fOI‘ Device 1 Device 2 Device 3 | Device n EI| E&{|

Arduino can even use

the built-in resistors

on the AVR

SDA ==
SCL ==
¢ Capacitance for each /0 Pin - 10 pF
fs. | SCL Clock Frequency fo !> max(16tgc , 250kHz) 0 400 kHz
fsoL <100 kHz Vec-04V 1000ns 0
3mA A
Rp Value of Pull-up resistor
fSCL >100 kHZ M @ Q
3mA B
Address vs. Data
Figure 21-4. Address Packet Format
Addr MSB . AddrLSB RW ACK
—)
so» [XX X X X/
)
SCL

START

Figure 21-5. Data Packet Format

Aggregate "~
SDA

Data MSB

Data LSB

ACK

X

X

/

SDAfrom ~
Transmitter ___ ",

EaSS

X

X
XX

S 2

SDA from
Receiver __/

SCL from
Master

A

A P

_______ AVANAVAVAN

Data Byte

9

STOP, REPEATED
START or Next
Data Byte

10/20/10

33

Using [2C/TWI

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

) 3.Check TWSR to see if START was 5.Check TWSR to see if SLA+W was
1-Applcation || _sent. Appication loads SLA+W into sent and ACK received. 7Ol I s L dias sk
i esm‘?ﬁale © || TWDR, and loads appropriate control Application loads data into TWDR, and e caﬁ:r? o ar eﬁvia}e o
P i A signals into TWCR, makin sure that loads appropriate control signals into :ignals it ngp i‘i“o S CA
TWINT is written to one, TWCR, making sure that TWINT is j h
START and TWSTA is written to zero. written to one making sure that TWINT is written to one

[|]

TWIbus | START SLA+W ‘ A Data

N 2

Indicates
2. TWINT set. 4. TWINT: ael. 6. TWINT set. TWINT set

Status code indicates Stalus codo Incicatos Status code indicates

SLA+W sent, ACK
START condition sent received data sent, ACK received

TWI
Hardware
Action

Luckily Arduino comes with an [2C library!

Wire Library

Buy | Download | Getting Started | Learning | Reference | Hardware | FAQ Blog » | Forum » | Playground »

Reference Language (extended) | Librarles | Comparison | Changes

Wire Library

This library allows you to communicate with 12C / T

4, and SCL (cloc!

On most Arduino boards, SDA (data line) Is on analog Input pin
, SDA Is digital pin 20 and SCL Is 21

) Is on analog Input pin 5. On the Arduino M

Functions

begin()
begin(ad
requestFrom(add
beginTransmisslon(
endTransmisslon()
send()

« byte avallable()

« byte recelve()
onRecelve(handler)
onRequest(hand

, count)

Note

There are both 7- and 8-bit v
to or read from
you'll want to drop th

library u
ow bit (I

10/20/10

34

10/20/10

#include <Wire.h>
// TWI (12C) sketch to communicate with the LIS3LV02DQ accelerometer
// Using the Wire library (created by Nicholas Zambetti)
// On the Arduino board, Analog In 4 is SDA, Analog In 5 is SCL
// The Wire class handles the TWI transactions, abstracting the nitty-gritty to make
// prototyping easy.
void setup(){
pinMode(9, OUTPUT);
digitalWrite(9, HIGH);
Serial.begin(9600);

Wire.begin(); // join i2c bus (address optional for master)
Wire.beginTransmission(0x1D);

Wire.send(0x20); // CTRL_REG1 (20h)

Wire.send(0x87); // Device on, 40hz, normal mode, all axis's enabled
Wire.endTransmission();

}
// Switch to Wii Nunchuck Slides!

Roll your Own Interface

O TLC 5940 - 16-output LED driver with PWM on each
output
12-bits of PWM = 4096 levels of brightness

16 bits with 12-bits of PWM each = 192 bits to send for
each change of the LEDs

Communicates with a serial protocol, so you can chain
them together

BUT, it’s not SPI or 12C!
O Rats...

35

VCC GND

TLC 5940

SCLK SIN XLAT
| Il

DCPRG

%

REF} [Max OUTn
Current

VREF =1.24V
o

-+

— — 4 VPRG
110

VPR %o Constant Curen]
o GSRegister |—.| 12-8it Grayscal Driver ouTo
PWM Control &
RG

Dela:
x0

o - 6-Bit Dot
| _I DC Regsﬁr Corre
Gscui
o] on ~
0 DC EEPROM LED Open Detection
Input VPRG
Shit
0 Lo E i
Status - Constant Current]
Information: | 192 192 . 12-Bit Grayscale D
LOD, ’—In G Reg‘s‘“zg'—'l PWM Control |‘L 'Wé Uty
TED,
DC DATA -9 - D‘iPRG
191 o5 % - > 6-Bit Dot
T DC Register coeids
L g 7
« VPRG
6 LED Open Detection
LED Open %
e
(LOD) [: :) s
R : % : :
*— Blank CI
Input Constant Current
Sht | | 55 Register, f2- 6t Giaydoale Driver ouT15
Register 180 PWM Control s
DCPRG

XERR

6-Bit Dot
Comeaction

= T
souT VPRG
VPRG)SDC Data Input Mode(« GS Data Input Mode «
|) »
ha—p| g =I ‘whz—’: :‘_
XLAT [g [1 [q [
R [D) 1)
15t GS Data Input Cycle | Z\dGSDaialrvuleda
SIN i GJ
|

I
|
T
I
s > 1t St b1

(¢
GS1 p) sl
R

il
scLK ﬂsswssm_mw L[LA L

> o

sout T

DC - R GS1
MSB

sD1 SID1
MSB MSB-1

[TE =

BLANK _ : §

I 1st GS Data Output Cycle

spz |MST‘21_
| | s

« I 2nd GS Data Output Cycle

b

| |
T = e T
GSCLK ! | « i o !
—5 — e T et %4 o e
ouTo s B} T bz P 1= | : gscw Pl !
—5— 1L §]
(current) | 9 D} >l le | Tt [P
Bl ey | Y —> [laaty -PI l‘— outon
outt — 1 ! %
(current) | S |
I(—»ituﬂﬂsxv‘, P e texy
ouT15 §] R
(current) « H H « : H
» EN . 7
— 5 | b
XERR

Figure 11. Serial Data Input Timin

g Chart

10/20/10

36

PWM...

O Based on the “grayscale counter” which runs at a
frequency that you send the chip

GRAYSCALE PWM OPERATION

The grayscale PWM cycle starts with the falling edge of BLANK. The first GSCLK pulse after BLANK goes low
increases the grayscale counter by one and switches on all OUTn with grayscale value not zero. Each following
rising edge of GSCLK increases the grayscale counter by one. The TLC5940 compares the grayscale value of
each output OUTn with the grayscale counter value. All OUTn with grayscale values equal to the counter values
are switched off. A BLANK=H signal after 4096 GSCLK pulses resets the grayscale counter to zero and
completes the grayscale PWM cycle (see Figure 21). When the counter reaches a count of FFFh, the counter
stops counting and all outputs turn off. Pulling BLANK high before the counter reaches FFFh immediately resets
the counter to zero.

This means there are some relatively complex timings and relationships
Between the different signals that you have to get right

The Arduino 5940 library uses interrupt-driven control to get this right...

PWM...

O Based on the “grayscale counter” which runs at a
frequency that you send the chip

GRAYSCALE PWM OPERATION

The grayscale PWM cycle starts with the falling edge of BLANK. The first GSCLK pulse after BLANK goes low
increases the grayscale counter by one and switches on all OUTn with grayscale value not zero. Each following
rising edge of GSCLK increases the grayscale counter by one. The TLC5940 compares the grayscale value of
each output OUTn with the grayscale counter value. All OUTn with grayscale values equal to the counter values
are switched off. A BLANK=H signal after 4096 GSCLK pulses resets the grayscale counter to zero and
completes the grayscale PWM cycle (see Figure 21). When the counter reaches a count of FFFh, the counter
stops counting and all outputs turn off. Pulling BLANK high before the counter reaches FFFh immediately resets
the counter to zero.

8196 8196

Timer

1 1 Blank
XLAT

10/20/10

37

First, for a serial interfaced part it has a rather large number of signals. Fortunately we can ignore many of them if we

wish.

TLC5940 Library

e XERR : open collector, wire or-ed output that lets you know a TLC5940 is over heated or has a burnt out LED.
We can ignore this as it will always be on unless you have current using elements on all of the outputs.

e SOUT: serial data out from the TLC5940. Unless you wish to try to read the error bits you do not need this to
come to the Arduino. If you have more than one TLC5940 this is the line you daisy chain to the SIN of the
next package.

e DCPRG: this selects the source of the current limiter register, you could just tie it high.

e XLAT: you will need this to latch data after shifting.

e SCLK: you will need this to shift data.

e SIN: serial in to TLC5940, this is the output from the Arduino.

e VPRG: you need this to select either the current limit registers or the duty cycle registers for writing.

e GSCLK: this is the clock for the PWM. We will reprogram TIMER2 in the Arduino to make this signal. That will
cost us the native PWM on that timer, digital 11 on a mega8, 11 and 3 on a megal68.

e BLANK: this marks the end of a PWM cycle in addition to blanking the output. We will reprogram TIMER1 to
generate this signal. That will cost us the native PWMs on digital 9 and digital 10. (Tie a real, physical pull-up
resistor on this line to keep things blanked while your Arduino boots. Depending on your hardware, it is
possible that the TLC5940 would come up in a configuration that would dissipate too much power.)

TLC5940 Library

coo0oo 00000
oo ococooo oo0oo0o0
The 2Kk resistors let ~20 mA ool o0o0o0o0o 00000
oo ©cooo00 ocoo0o0o0
through each channel. oo 00000 00000
©cocoo00 ooo0o0o0
1=39.06/R oo
oo
€.2.39.06/2000 =0.020 A g g‘ Channel 31
The 10k pull-up resistor on o :
BLANK turns all outputs off o g
while the Arduino resets. m\
== o
™~ o
If using more than one tlc, g g
edit "NUM_TLCS" in tlc_config.h oo
(located in the library folder) ey o .
and delete TIe5940.0 o0 Channel 17
0.0} Channel 16
Channel 15
-
1 Channel 1
Channel 0
o
°
o
o
= o
” coo o
©ooco0o00 coo0o0o0

10/20/10

38

TLC5940 Library

Hardware Setup

The basic hardware setup is explained at the top of the Examples. A good place to start
would be the BasicUse Example. (The examples are in File->Sketchbook->Examples -
>Library-TIc5940).

All the options for the library are located in tlc_config.h, including NUM_TLCS, what pins
to use, and the PWM period. After changing tlc_config.h, be sure to delete the TIc5940.0
file in the library folder to save the changes.

Library Reference
Core Functions (see the BasicUse Example and TIc5940):

e Tlc.init(int initialValue (0-4095)) - Call this is to setup the timers before using
any other Tlc functions. initialValue defaults to zero (all channels off).

e Tlc.clear() - Turns off all channels (Needs Tlc.update())

e Tlc.set(uint8_t channel (0-(NUM_TLCS * 16 - 1)), int value (0-4095)) - sets the
grayscale data for channel. (Needs Tlc.update())

e Tlc.setAll(int value(0-4095)) - sets all channels to value. (Needs Tlc.update())

e uintl6_t Tlc.get(uint8_t channel) - returns the grayscale data for channel (see
set).

e Tlc.update() - Sends the changes from any Tlc.clear's, Tlc.set's, or Tlc.setAll's.

TLC5940 - setting the resistor

O One resistor sets current for all channels

REFERENCE RESISTOR

\&3
OUTPUT CURRENT
10 k T : Min = 5ma
I Max = 120ma
\

¢ \ Y iRer
g \ nay = R() 315
IZ: 1.92 kQ “HEF)
]
2 where:
& 1k \0.96 kQ _
8 \‘\ 0.64kQ V(IREF) =124V
s Lok — R rer) = User-selected external resistor.
§ 0.32kQ

100

0 20 40 60 80 100 120
lg = Output Current - mA

10/20/10

39

TLC5940 Summary

O Easy to use - if you use the tlc5940 library!

O Can also use for servo control

O

O
O
o

Use the PWM channels to drive servos
Remember about power issues!
Separate tlc5940 servo library

Resets some timing to get the servo timing right...

TLC servo functions. More...

#include
#include

Go to the
Defines
#define
#define
#define
#define

#define

<avr/io.h>
"Tlc5940.h"

source code of this file.

SERVO_MAX_ANGLE 180

The maximum angle of the servo.
SERVO_MIN_WIDTH 204

The 1ms pulse width for zero degrees (0 - 4095)
SERVO_MAX_WIDTH 410

The 2ms pulse width for 180 degrees (0 - 4095).
SERVO_TIMER1_TOP 20000

The top value for XLAT and BLANK pulses

SERVO_TIMER2_TOP 77
The top value for GSCLK pulses.

Functions

void

void

uint8_t

uintl6_t

uint8_t

tic_initServos (uint8_t initAngle)

Initializes the tic.

tic_setServo (TLC_CHANNEL_TYPE channel, uint8_t angle)
Sets a servo on channel to angle

tlc_getServo (TLC_CHANNEL_TYPE channel)
Gets the current angle that channel is set to.

tic_angleToVal (uint8_t angle)

Converts and angle (0 - SERVO_MAX_ANGLE) to the inverted tic channel value (4095 - 0).

tic_valToAngle (uint16_t value)

Converts an inverted tlc channel value (4095 - 0) into an angle (0 - SERVO_MAX_ANGLE).

10/20/10

40

This sketch sweeps a servo on channel 8.

w; I've tried with 3.3k) between the

control line like so

#include "Tlc5948.h"
#include "tlc_servos.h"

#define SERVO_CHANNEL @
#define DELAY_TIME 28

void setup()

tlc_initServos(); // Note: this will drop the PWM fregency down to S6Hz.

void loop()

for {int angle = @; angle < 188; angle++) {
tlc_setServo(SERVO_CHANNEL, angle);
Tlc.update();
deloy (DELAY_TIME);

¥

for {int angle = 180; angle == @; angle--) {
tlc_setServo(SERVO_CHANNEL, angle);
Tlc.update();
deloy (DELAY_TIME);

[ssue with 5940 and servos!’

Servos

Hobby servos are driven by short, high, pulses every 10-40ms. The constants have been chosen in the following
sample code to allow you to drive servos as well as LEDs or motors. Because the servos use high pulses and the
TLC5940 is active low on the outputs the useful servo values are all at the upper end.

e 3993, 0xf99: 500 microseconds
e 3584, 0xe00: 1500 microseconds
e 3168, 0xc60: 2500 microsecond

That will drive my cheap HS-311 through about 180 degrees. Do be careful not to hold your servo past its limits. It
will probably use a lot of power and possibly burn up its motor if you try to hold it there. Remember: the outputs only
sink current, you will want a pull-up resistor on here.

Use current-limiting feature of TLC5940 for this? More study may be in order...

10/20/10

41

10/20/10

Summary

O There are lots of ways to interface with other chips
O shiftOut() - simple serial
O Output only

© SPI - standard serial protocol - three wires CLK, DATA, En
0O Can be bi-directional

O 12C / TWI - two wire protocol - requires a little more
complex addressing and protocol, and pullup resistors

O Can also be bidirectional

O Non-standard serial - read the data sheet carefully!

i3l
o0 vee
0000 e0
ooo0 00
®06000
Ll A4 Ll
L L L L Lol

42

LED Driver Chips

T4HC595 - shift register with output latch ($0.62)

Drives 8 LEDs, but each one needs a currentlimiting resistor

STPO8DPO5 - Drives 8 LEDs with constant-current sources ($1.82)
SPI interface

MC14489 - drives 5-digits of 7-segment display or 20 LEDs ($4.50)

Common-cathode LED arrays or digits - SPI interface

MAX 7219/7221 - drives 8 digits of 7-segment display or 84 LEDs (8x8
array)($10.86)

Common-cathode LED arrays or digits — SPI interface

TLC5940/5941- Drives 16 LEDs with each LED having 12 bits of
PWM brightness ($3.50)

Complicated communication protocol

Can also be used for multiple servos

10/20/10

43

