" .- Interfacing with other chips

Examples of three LED driver chips

Overview

O There are a number of different protocols used for
inter-chip communication
Serial output - simplest protocol.
0O CLK/Data, unidirectional
O Example: STPOSDPO5 8-bit LED driver
SPI - slightly more complex- Serial Peripheral Interface
O CLK/Data/Load
0O Example: MAX 7219 8-digit LED display driver
[!C/TWI - two-wire interface - more complex
0O CLK/Data - bidirectional
O Example: Wii Nunchuck
Custom protocols - potentially complex
O Example: TLC5940 16-bit PWM LED driver

Serial Communication

Asynchronous communication Synchronous communication
X RX clock
DeviceA [Device B Device A » mﬁah BiEA Device B
X @ T
— — T S
asynchronous — no clock Synchronous — with clock
Data represented by setting Data represented by setting
HIGH/LOW at given times HIGH/LOW when “clock™ changes

A single clock wire & data wire for

Separate wires for transmit & receive - S
P each direction like before

Serial Output

0O Two pins: Clk and Data
New data presented at Data pin on every clock
Looks like a shift register

Figure 4: Microwire Profocol

| I
| 2
|

		[— - —				
[[I		R			
			\	\		
ooamst) Bl K	L K = N CTR					
It1					\	\
el e N B E % A R R R IR L/						
	%t					I
ey % ¢ ¥ ¥ 9 AT O R [
\						
1						
st Data lofched $0: Dala changes
(shifed in) (shifed ouf)
on Asing on falling
clock edge clock edge

Example: STPOSDPO5

Figure 2. Normal mode - block diagram

SDI/CLK shifts

ouTo ouTe ouT7

s
R—EXT T ‘I —I
D—{ I-REG B+
J

[Open/Short circult detector I

OQutput Enable

Thermal
Shutdown

s

g
|
CLK [:

Control
Logic

8X Data Latch |

1
l—s(tjm

8X Shift Latch

data into the 8-bit
shift-register

LE moves data to
the “data latch” so
that it can be seen
on the output

OE controls
whether the data
is enabled to drive
the outputs

R-EXT sets the
current for each
output

Example: STPOSDPO5

Figure 7. Timing diagram - normal mode

ek HIGH
S I S

HIGH
o JTL L TTLA o

£/out m HIGH
ov

Oc/oM2 e
ov

outo

OUT1sfviby ’—I_ Z:F
ourz I—l_ Z:F
o o

Timing diagram shows
shifting data in, one bit
per clock

Data is transferred to
output register on a

high LE (clocked?)

Data shows up only
when OE is low

This means you can dim
all 8 LEDs using PWM
on the OE signal

Arduino Code

O Arduino has a built-in function to shift data out for
devices like this

Syntax
hiftOut(dataPin, clockPin, bitOrder, value)
Parameters

ch to output each bit (int)

clockPin: the pin to toggle once the dataPin has been set to the correct value (int)

bitOrder: which order to shift out the bits; either MSBFIRST or LSBFIRST.

ost Significant Bit First, or, Least Significant Bit First

Returns

Arduino Code

void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, byte val)
{inti;
for (i=0;i<8;i++) {
if (bitOrder == LSBFIRST)
digitalWrite(dataPin, !!(val & (1 <<i)));
else
digitalWrite(dataPin, !'(val & (1 << (7 -))));

digitalWrite(clockPin, HIGH);
digitalWrite(clockPin, LOW);

}

Arduino Code (different chip)

int latchPin = 8; //Pin connected to ST_CP of 74HC595
int clockPin = 12; //Pin connected to SH_CP of 74HC595
int dataPin = 11; //Pin connected to DS of 74HC595

void setup() { //set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);}

void loop() { //count up routine
for (intj = 0; j < 256; j++) {

//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, j);

//return the latch pin high to signal chip that it
//no longer needs to listen for information

digital Write(latchPin, HIGH);

delay(1000); }}

Arduino Code (STPOSDPO5)

int latchPin = 8; //Pin connected to LE of STPOSDPO05
int clockPin = 12; //Pin connected to CLK of STPOSDP05
int dataPin = 11; //Pin connected to SDI of STPOSDP05
Int OEPin = 10; //Pin connected to OEbar of STPOSDPO05

void setup() { //set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);

pinMode(clockPin, OUTPUT);

pinMode(dataPin, OUTPUT);

pinMode(OEPin, OUTPUT);}

void loop() { //count up routine

for (intj = 0;j < 256; j++) {

//ground latchPin and hold low for as long as you are transmitting, OE pin is high...
digitalWrite(latchPin, LOW); digitalWrite(OEPin, HIGH);

shiftOut(dataPin, clockPin, LSBFIRST, j);

//return the latch pin high to signal chip that it

//no longer needs to listen for information
digitalWrite(latchPin, HIGH); digitalWrite(OEPin, LOW);
delay(1000); }}

10/6/09

Chaining Multiple Chips

Figure 2. Normal mode - block diagram

ouTo ouTe out7

s et

I-REG B+]

I

| Open/Short circuit detector

[

Output Enable

OE\DM2

Control
Logic

|
LENDM1 D] 8X Data Lafch
|

S0l
0—9—{ 8X Shift Lafch o
CLK ;

Choosing a Resistor

Figure 11. Output current-Rgyy resistor

8000

7000

6000

5000

4000 H
3000 H

2000

Rext (Ohm)

1000

ol Ll

0

0 10 20 30 40 50 B0 70 80 00 100 110 120 130 140
Ouput Current (mA)
To=25°C, Vdrop=0.3V; 1.2V, Iset = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; B0 mA, Max

Table 10. Output current-Rexy resistor

Output current (mA) 3 5 10 20 50 80 130

Rext (02) 6740 3930 1913 963 386 241 124

Maximum output current capabilities setting was 130 mA applyingan Rext = 124 2

STPOSDPO5 Summary

O Easy chip to use
Simply use ShiftOut to shift data to the chip
LE to capture the data
OE (active-low) to make the data appear (or for PWM)
Can chain many together to drive lots of LEDs
Constant-current drivers so only one resistor per chip

Simple on or off for each LED

SPI Interface

O Serial Peripheral Interface
Very similar to previous interface

“official” version has bidirectional data - you can read
back data from the other device at the same time as
you're sending

But, you can ignore that and use the same ShiftOut
function if you like

Slave
Device #1

Example: MAX 7219

O Display driver for 7-segment displays
O Can also be used for 8x8 array of LEDS
O Uses PWM/timed-multiplexing to drive the LEDS

O Cycles between each of 8 “digits” fast enough so they all
look ON

Pin Configuration

Typical Application Circuit

TOP VIEW . 7
el o 38888888
D)GUE 23S[GD ‘l l‘.llln‘.ll[l
D64 [3] 2] s6 0P =
o0 [4] mmama [2] st 19
9.53k V.
MAX7219 i3
DME maxrzi %Sm L . DIG 0-DG 7
DiG2 |6 19| V&
8DIGTS
63 [7] 18] 1seT s 1| o MAX7219
067 [8] [17] 566 Iz A
o *
w0 [3] o WP 10 LOAD (T5)
o L] P SEGA-G,
06 s [10} BES: - A SEGDP
9 B SEGMENTS
D6 1 [i1] [12] seca)
1040 €9) [12} [13] cik 3
() MAX7221 ONLY DIP/SO () MAXT221 ONLY S-DIGIT uP DISPLAY
Table 6. No-Decode Mode Data Bits and

Corresponding Segment Lines

A
—
F I[i I‘ ‘IB
|
Lie |
[) STANDARD 7-SEGMENT LED
[} 1
E‘|‘ I‘ I‘I I‘u
J J
| — @]
D DP
REGISTER DATA
D7 | D6 |Ds (D4 (D3 | D2 | D1 | DO
Correspending or| A B c D £ E e
Segment Line
Functional Diagram
SEG A-SEG G, DP DIG 0-DIG7
SEGMENT DRIVERS DIGIT DRIVERS
+
8 | SHUTDOWN REGISTER] ‘
CODEB | MODE REGISTER
Ve | AOMwWITH ™ < Ly
| BYPASS +—{ INTENSITY REGISTER > \wiotH
gpw /'A, t»-| SCAN-LIMIT REGISTER MODULATOR
8 | DISPLAY-TEST REGISTER
CURRENT | &8
REFERENCE DUAL-PORT MULTIPLEX
i ADDRESS T_— kg
IRCUITRY
‘af ¢8| REGISTER Ll
LOAD (CS) ™ DECODER

pin »— Do [01 [b2 03 [04 [05 06 [07 [08 [D8 [or0[on1 [prz]mra]orafons] |— pour
$

ZLEAT,

gs— 13 FEAEPE

() MAX7221 ONLY

(MsB)

i
— s b

o X0 - TEXARENTNLX

on ik
— o |-

DouT X :X X

Figure 1. Timing Diagram

Table 1. Serial-Data Format (16 Bits)

D15 | D14 | D13 | D12 D11[D1o]09|ne D?IDBIDSlDfilDSID?lmIDO

X X X X ADDRESS MSB DATA LSB

Table 2. Register Address Map

ADDRESS Hex
e [3152_ D11 | D10 | D9 | Ds | CODE
No-Op X 0 0 0 0 | oxxo
Digit 0 X 0 0 0 1 0xX1
Digit 1 X 0 0 1 0 | oxxz2
Digit 2 X 0 0 1 1 0xX3
Digit 3 X 0 1 0 0 | oxx4
Digit 4 X 0 1 0 1 0xX5
Digit 5 X 0 1 1 0 | oxXe
Digit 6 X 0 1 1 1 0xX7
Digit 7 X 1 0 0 0 | oxxs
r\DAiZZdQ X 10| o] 1| oxxe
Intensity X 1 1 0 OxXA
Scan Limit X 1 0 1 1 0xXB
Shutdown X 1 1 0 0 oxxXC
5);1?[35« X 11 [1] 1| oxxF

Dig0

Dig1

Dig2

Dig3

Dig4

Dig5

Dig6

Dig7

SegDP

*

-—

-—

SeghA SegB SegC SegD SegkE SegF SegG

3

*
*

Common-Cathode

LED array

Led Matrix 8x8

O On

O On

MAX 7219

the one hand - just like STPOSDPO5

the other hand, more complex internal structure
Each SPI transfer needs to be 16 bits - address/data

O Two Arduino libraries available

Matrix - built-in to Arduino environment

LedControl - download from Playground - more
complex control

Matrix Library

Matrix
Library

LedControl Library

O Support for more than one MAX 7219
O Support for numbers and letters on 7-segment displays

O Support for rows and columns in an 8x8 matrix

LedControl Library

I* We start by including the library */
#include "LedControl.h”

* Make a new instance of an LedControl object
* Params :
*int dataPin The pin on the Arduino where data gets shifted out (Din on MAX)
*int clockPin The pin for the clock (CLK on MAX)
*intcsPin The pin for enabling the device (LD/CS on MAX)
* int numDevices The maximum number of devices that can be controlled
)
LedControl Ic1=LedControl(12,11,10,1);

LedControl Library

void clearDisplay(int addr);

void setLed(int addr, int row, int col, boolean state);
void setRow(int addr, int row, byte value);

void setColumn(int addr, int col, byte value);

void setDigit(int addr, int digit, byte value, boolean dp);
void setChar(int addr, int digit, char value, boolean dp);

/*

* Display a character on a 7-Segment display.

* There are only a few characters that make sense here :
(0234 56 T 890

N d L E VRV H L P

i

LedControl Library

Ilinclude this file so we can write down a byte in binary encoding

#include <binary.h>

IInow setting the leds in the sixth column on the first device is easy

Ic.setColumn(0,5,800001111);

IInow setting the leds from the third row on the first device is easy

Ic.setRow(0,2,810110000);

/Iswitch on the led in the 3'rd row 8'th column
/land remember that indices start at 0!
Ic.setLed(0,2,7 true);

/ILed at row 0 second from left too
Ic.setlLed(0,0,1,false);

10/6/09

14

MAX 7219 - Setting Resistor

O This resistor goes to Vdd, NOT GND!

Sets current for each segment (LED)

SEGMENT DRIVER OUTPUT CURRENT

vs. OUTPUT VOLTAGE

Table 11. RSET vs. Segment Current and

o ‘ = LED Forward Voltage
I~
_|fgr-1a . Vieo (V)
z s Sl I A
£] SEa(MA) 5 T 20 | 25 | 30 | 35
E'ﬁ] \""-.
£ =i 40 122 | 118 | 110 | 106 | 969
s ¥ == 30 178 | 171 | 158 | 150 | 140
5 T
S 2 k-« ™ 20 208 | 280 | 259 | 245 | 228
10 ==~ 10 667 | 637 | 593 | 554 | 512
0
0 1 2 3 4 5

OUTPUT VOLTAGE (V)

These values are in kOhms!!!

Multiple MAX chips

38888888

38888868

8

LDAD(CS)

DouT
SEGD
SEG DP
SEGE
SEGC
Vs

SEGG
SEGB
SEG F
SEGA

CLK

8 8 8y
DATA N ——] oy DouT DIN
o Joco s60f-e o060
o] oG eGP | o6
GND SGE |- GND
eLocs sccl- W {06
[L Ve $ — P
oJocs ISET ——/\/\/\/J 0F | o loes
oo SEGG | 9532 g o Jocr
GND sece | GND
- oJogs sGr |- —L o] os
- oG 56 A | MMADAM - pe1
LOAD (C5) okl ﬂﬁ%?
LOAD DATA »;
CLOCK B

TR

0.1uF

v

9.53k2

MAAAN

MAX7219
MAX7221

Multiple MAX Chips

O There is an important difference between the way the
setRow() and the setColumn() methods update the
Leds:

setRow() only needs to send a single int-value to the

MAX72XX in order to update all 8 Leds in a row.

setColumn() uses the setLed()-method internally to
update the Leds. The library has to send 8 ints to the
driver, so there is a performance penalty when using
setColumn().

You won't notice that visually when using only 1 or 2
cascaded Led-boards, but if you have a long queue of
devices (6..8) which all have to be updated at the same
time, that could lead to some delay that is actually
visible.

MAX 7219 Summary

O Drives more LEDs than the STPOSDPO5

Designed for common-cathode LED arrays
O Set the anodes to true and false

O Pull down the cathodes in sequence

Uses time-multiplexing to drive them all
Also supports 7-segment displays

Slightly more complex interface

Aside: Vintage 7-seg displays
A3 8 e el G
AUEERE G
notch 0
AFee B R@en2 = "DP.-D 0
Table 6. No-Decode Mode Data Bits and 1 ” -
Corresponding Segment Lines
1 s
Lie L
[— STANDARD 7-SEGMENT LED
s ;
/ /
: '.D:“ ' o Common-Cathode LEDs
Vf=1.6v
REGISTER DATA
D7 (D6 |Ds | D4 | D3 (D2 | D1 | DO
Goreeoenad lop | a |2 [o o || ¢ |

Atmel SPI Support

O The Atmel ATMega328 chip supports hardware-
controlled SPI
Could be faster than ShiftOut function
Uses built-in SPI register on ATMega328

O Set up the SPI functionality by setting bits in a control
register

O Write data to the SPI output register (MOSI) which causes
the transfer to happen

O A bit gets set in the control register when it’s done

Atmel SPI Support

Figure 18-1. SPI Block Diagram'?)

| O M e 2
i [l
XTAL MSB LSB :'g
8 BIT SHIFT REGISTER * <]
READ DATA BUFFER e
DIVIDER e
/2/4/8/16/32/64/128 E
L] T g
o
Cl =
SPI CLOCK (MASTER CLOCK £
SELECT cLOCK s sck
LOGIC i
' a
= ow| &€
22 8
MSTR
l SPI CONTROL SSPE .
g o x 4 < < o
w| O E Wil w 2 = O T o o
CLEETER EEEEEEE
SPI STATUS REGISTER [SPI CONTROL REGISTER
8 8 l

SPI INTERRUPT INTERNAL
REQUEST DATA BUS

Slave
Device #1

SPI library setup

Spi Library

This library provides functions for transferring information using the Serial
Peripheral Interface (SPI). The SPI interface is automatically initialized when the
Spi library is included in a sketch. It sets the following digital I/O pins:

pin 13 SCK SPI clock

pin 12 MISO SPI master in, slave out
pin 11 MOSI SPI master out, slave in
pin 10 SS SPI slave select

The default SPI configuation is as follows:

SPI Master enabled

MSB of the data byte transmitted first
SPT mode 0 (CPOL = 0, CPHA = 0)

SPI clock frequency = system clock / 4

mode(byte config)
Sets the SPI configuration register. Only required if the default
configuration described above must be modified. The SPE (SPI enabled)
and MSTR (SPI master) bits are always set. If there are multiple SPI
devices on the bus which require different SPI configurations, this function
can be called before accessing each different device type to set the
appropriate configuration.

Example:

Spi.mode((1<<CPOL) | (1 << CPHA)); // set SPI mode 3

or

Spi.mode((<<SPR0O)); // set SPI clock to system clock /

byte transfer(byte b)
Sends and receives a byte from the SPI bus.

Example:
n = Spi.transfer(0x2A); // sends the byte 0x2A
// and returns the byte received

byte transfer(byte b, byte delay)
Delays for a number of microseconds, then sends and receives a byte from
the SPI bus. This function is used if there are timing considerations
associated with the data transfer.

Example:
n = Spi.transfer(0x2A, 2); // waits 2 usec, then sends the by
// and returns the byte received

Transfer a byte using SPI

Magic stuff happens here: By writing data to the SPDR register, the SPI transfer is
Started. When the transfer is complete, the system raises the SPIF bit in the SPSR
Status register. The data that comes back from the slave is in SPDR when you’re
Finished.

SPI Details

18.5.1 SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0

ox2C(oxaC) [SPIE] SPE]| DORD | MSIR | CPOL | CPHA | SPRI | SPR0] SPCR
ReadWrite AW AW AW AW W e W W

Initial Value 0 0]] 0] 0 0

+ Bit 7 — SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

+ Bit 5 — DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 - MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

SPI Details

+ Bit 3 - CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL functionality is sum-
marized below:

Table 18-3. CPOL Functionality

CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase

The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 18-3 and Figure 18-4 for an example. The CPOL
functionality is summarized below:

Table 18-4. CPHA Functionality

CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

SPI Details

* Bits 1, 0 - SPR1, SPRO0: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have

no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f,,. is
shown in the following table:

Table 18-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRo SCK Frequency

0 0 0 foscld

0 0 1 fosc/16

0 1 0 fosc/B4

0 1 1 fosc/128

1 0 0 foed/2

1 0 1 fosd/8

1 1 0 Tc/32

1 1 1 f,s/64

SPI Details

SPSR - SPI Status Register

Bit 7 6 5 4 3 2 1 0
oeD(oxaD) [T SPE | WCOL | - 1 -] -] SPEX]| sPsm
Read/Writ2 R R R A A R R AW
Initial Value 0 0 0 (1] 0 0 0 0

* Bit 7 - SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

* Bit 6 - WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

* Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 18-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f , /4
or lower.

SPI Summary

O Very general way to send serial information from

Arduino to another chip
DIY version: ShiftOut
Fancy version: SPI library
Both do pretty much the same thing
Make sure your chip “speaks” SPI
If it “speaks” I2C, a whole different ball of wax...

12C — ak.a Wi

O Uses only two wires to communicate

Simpler?
O Each wire is bidirectional
O Can address up to 128 devices on a single [2C bus

O Actually more complex...

12C T aka Wi

21.2 2-wire Serial Interface Bus Definition
The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

cc

e
us)
¥

Device 1 Device 2 Device 3 | | Devicen

SDA

A
\)

SCL

A
\

21.2 2-wire Serial Interface Bus Definition

The 2-wire Serial Interface (TWI) is ideally suiled for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 21-1. TWI Bus Interconnection

Device 1 Device 2 Device 3 | | Devicen ’T?T‘ FJ
SDA -= -
SCL = >
cih Capacitance for each /0 Pin - 10 pF
fee. | SCL Clock Frequency fo > ma(16fqg, 250kHz) 0 400 kHz
fso €100 kHz Vee-04V 100005 0
3nA)
Rp Value of Pull-up resistor
fSCL > 100 kHZ VC(‘ i 074"' 300ns 0
3nA T
Address vs. Data
Figure 21-4. Address Packet Format
Addr MSB AddrLSB RW CK

o NS XN T
NIV AVANAVAVANE

Figure 21-5. Data Packet Format

START

} Data MSB : DataLSB ACK }
Aggregate ~%, | SLEY, \ \ T
- gl / 22 X X/
SDAfrom f \/ [\ 7 i
Transmitter ___ ", / A X i \(/
SDAfrom ~~ J .
Receiver
SCL from / \ i '\ \J’,
Master / \._/ / L/ S
1 2
STOP, REPEATED
SLA+RW Data Byte START or Next

Data Byte

Using 12C/TWI

Figure 21-10. Interfacing the Application to the TWI in a Typical Transmission

" 3.Check TWSR o see if START was 5. Check TWSR to see if SLA+W was v
s ; A‘{’“‘m‘ggt sent. Application loads SLA+W info sent and ACK received. {-HerK mgi&m r da;a W G
S L Qs\n?tiate © || TwDR, and loads appropriate control Application loads data into TWDR, and e Caﬂ;f Faerl ar“;“’fia‘te are
B8 || tuoteindt signals Into TWCR, makin sure that loads appropriate control signals Into fipnals it S'IPSP ?mo o
a< START TWINT is written fo one, TWCR, making sure that TWINT is mak]g sure that TWINT is writtien lolone
< and TWSTA is written to zero, written to one 9
TWIbus | START SLA+W ‘ A . Data | A . STOP ‘
Indicates
- 2. TWINT set S[a:J‘ST:gg:Ti“Z‘?:a!EE 6. TWINT set. TWINT set
£ 8% | Status codeindicates A sk e Status code indicates
% < START condition sent feCEWQ[‘j data sent, ACK received

Luckily Arduino comes with an [2C library!

Roll your Own

O TLC 5940 - 16-output LED driver with PWM on each
output
12-bits of PWM = 4096 levels of brightness

16 bits with 12-bits of PWM each = 192 bits to send for
each change of the LEDs

Communicates with a serial protocol, so you can chain
them together

BUT, it’s not SPI or [12C!
O Rats...

TLC 5940

VeC GND SCLK SN XLAT DCPRG
L L I} n
= rF T oNT
B =l g BtGrayscasl |~ B
= 3 outo
RER [Max oUTn] "REF T2V — 4 vero (il PWM Control -
— eI
Current 190 DCPRG
| | 0 v -8l Dot
1 Correction
GSCLK
BLank] | GSCounter | ot —
n n
1
Reg CNT
1924 '—| | .l I12‘Ei|Graywls| Cmsé‘}'“c‘"“
. GS Register PWM Control M’A ouTt
DCPRG Dea
- b
1]0
« VPR
%
: H
. H
inpet Constant Current
Shift Driver ouT15
Register T
XERR
191
souT
VPRG IDC Data Input Mo @ GS Data Input Mode «
|)] W
o g —————— B b
|
Lax "jt m | . H (’(H
1) 1 T 1 3 ¥
| | 12GSDatainput Cycle’ i 214 GS Data Input Cyce
A [[(& [| [& |
] | 1) -
‘H-\.i;-t}q—pl‘mz o B i < S P e =i
scik | - ; = i rlE = W 3
Iy T : L
| | ¢ wo *|| tod0
E]S DC J]s Gs1 L SD1| SID1 I)f] SID1| Gs2 SID2 | SID2]
sout :[55 [-]] =] lu)l s | [REhee] \%_Lg_qlusa [[
! ')
{i
BLANK SS !)s I 15t GS Data Outpul Cycle ”] 2nd GS Data Output Cycle
| ! |) | I 1
| ; 2 P [t B e
GSCLK l | % 1 g 4096 1
— T f) ! |
| | [1] e —» tat
e L I ™ by e | i T e [
(current) $ | } % I 4 : | g
} T — >y oty 4 b
1
gy~ ¥ L | e
H‘nﬂ“"'ﬂ > 1501y
ouT1s g Frvmy g
(current) ¢ 5| H g H i
Eadh
—5 : e
XERR L | el

Figure 11. Serial Data Input Timing Chart

PWM...

O Based on the “grayscale counter” which runs at a
frequency that you send the chip

GRAYSCALE PWM OPERATION

The grayscale PWM cycle starts with the falling edge of BLANK. The first GSCLK pulse after BLANK goes low
increases the grayscale counter by one and switches on all OUTn with grayscale value not zero. Each following
rising edge of GSCLK increases the grayscale counter by one. The TLC5940 compares the grayscale value of
each output OUTn with the grayscale counter value. All OUTn with grayscale values equal to the counter values
are switched off. A BLANK=H signal after 4096 GSCLK pulses resets the grayscale counter to zero and
completes the grayscale PWM cycle (see Figure 21). When the counter reaches a count of FFFh, the counter
stops counting and all outputs turn off. Pulling BLANK high hefore the counter reaches FFFh immediately resets
the counter to zero.

This means there are some relatively complex timings and relationships
Between the different signals that you have to get right

The Arduino 5940 library uses interrupt-driven control to get this right...

PWM...

O Based on the “grayscale counter” which runs at a
frequency that you send the chip

GRAYSCALE PWM OPERATION

The grayscale PWM cycle starts with the falling edge of BLANK. The first GSCLK pulse after BLANK goes low
increases the grayscale counter by one and switches on all OUTn with grayscale value not zero. Each following
rising edge of GSCLK increases the grayscale counter by one. The TLC5940 compares the grayscale value of
each output OUTn with the grayscale counter value. All OUTn with grayscale values equal to the counter values
are switched off. A BLANK=H signal after 4096 GSCLK pulses resets the grayscale counter to zero and
completes the grayscale PWM cycle (see Figure 21). When the counter reaches a count of FFFh, the counter
stops counting and all outputs turn off. Pulling BLANK high before the counter reaches FFFh immediately resets
the counter to zero.

8196 8196

Blank
s XLAT

=
=

TLC5940 Library

First, for a serial interfaced part it has a rather large number of signals. Fortunately we can ignore many of them if we
wish.

XERR : open collector, wire or-ed output that lets you know a TLC5940 is over heated or has a burnt out LED.
We can ignore this as it will always be on unless you have current using elements on all of the outputs,
SOUT: serial data out from the TLC5940. Unless you wish to try to read the error bits you do not need this to
come to the Arduino. If you have more than one TLC5940 this is the line you daisy chain to the SIN of the
next package.

DCPRG: this selects the source of the current limiter register, you could just tie it high.

XLAT: you will need this to latch data after shifting.

SCLK: you will need this to shift data.

SIN: serial in to TLC5940, this is the output from the Arduino.

VPRG: you need this to select either the current limit registers or the duty cycle registers for writing.

GSCLK: this is the clock for the PWM. We will reprogram TIMER2 in the Arduino to make this signal. That will
cost us the native PWM on that timer, digital 11 on a mega8, 11 and 3 on a megal68.

BLANK: this marks the end of a PWM cycle in addition to blanking the output. We will reprogram TIMER1 to
generate this signal. That will cost us the native PWMs on digital 9 and digital 10. (Tie a real, physical pull-up
resistor on this line to keep things blanked while your Arduino boots. Depending on your hardware, it is
possible that the TLC5940 would come up in a configuration that would dissipate too much power.)

TLC5940 Library

o000
oo ocooo0o0
The 2K resistors let ~20 mA ool ococooo
ool cocooo
through each channel. oo 60000
oo o000
1=3906/R 00000
€.g.39.06/2000 =0.020 A b [l
) s by Chamnel 31
‘The 10k pull-up resistor on 221 = g; ; necos
BLANK turns all outputs off brEnan -
while the Arduino resets. b o on %
50000 :
50000 :
If using more than one tle, > : g o N
edit "NUM_TLCS" in tle_config.h ooo i
(located in the library folder) g g -
and delete Tle5940.0 oo0o0 Channel 17
080 Channel 16
oo
ooo
Fo Channel 15
oooo i
000 -
pooOoGe -
ooow -
oooe]
ooo
00000 -
00000 -
20000 %
oooo il
s000 .
o ocoa Channel 1
sy Channel 0
ooo
oo
ooo
ooo
ooo
000

TLC5940 Library

Hardware Setup

The basic hardware setup is explained at the top of the Examples. A good place to start
would be the BasicUse Example. (The examples are in File->Sketchbook->Examples -
>Library-TIc5940).

All the options for the library are located in tlc_config.h, including NUM_TLCS, what pins
to use, and the PWM period. After changing tlc_config.h, be sure to delete the Tlc5940.0
file in the library folder to save the changes.

Library Reference
Core Functions (see the BasicUse Example and Tlc5940):

« Tlc.init(int initialValue (0-4095)) - Call this is to setup the timers before using
any other Tlc functions. initialValue defaults to zero (all channels off).

« Tlc.clear() - Turns off all channels (Needs Tlc.update())

o Tlc.set(uint8_t channel (0-(NUM_TLCS * 16 - 1)), int value (0-4095)) - sets the
grayscale data for channel. (Needs Tlc.update())

« Tlc.setAll(int value(0-4095)) - sets all channels to value. (Needs Tlc.update())

« uintl6_t Tlc.get(uint8_t channel) - returns the grayscale data for channel (see
set).

« Tlc.update() - Sends the changes from any Tlc.clear's, Tlc.set's, or Tlc.setAll's.

TLC5940 - setting the resistor

O One resistor sets current for all channels

REFERENCE RESISTOR

Vs
OUTPUT CURRENT
10 k [‘ Min = 5ma
jna pry Max = 120ma
\
a \ v
= \ o ﬁ X 315
3
£ i (IREF)
2
L] where:
2 1k _{.ssw
8 — V(|REF; =124V
E e & Rirer) = User-selected external resistor.
= 0.32!9
100
0 20 40 60 80 100 120

lg = Output Current = mA

TLC5940 Summary

O Easy to use - if you use the tlc5940 library!

O Can also use for servo control
Use the PWM channels to drive servos

Remember about power issues!

Summary

O There are lots of ways to interface with other chips
shiftOut() - simple serial
O Output only
SPI - standard serial protocol - three wires CLK, DATA, En
O Can be bi-directional

[2C / TWI - two wire protocol - requires a little more
complex addressing and protocol, and pullup resistors

O Can also be bidirectional

Non-standard serial - read the data sheet carefully!

