
� � � � � � � �

� �

Interfacing with other chips
Examples of three LED driver chips

Overview

   There are a number of different protocols used for

inter-chip communication

   Serial output – simplest protocol.

   CLK/Data, unidirectional

   Example: STP08DP05 8-bit LED driver

   SPI – slightly more complex– Serial Peripheral Interface

   CLK/Data/Load

   Example: MAX 7219 8-digit LED display driver

   I2C/TWI – two-wire interface – more complex

   CLK/Data - bidirectional

   Example: Wii Nunchuck

   Custom protocols – potentially complex

   Example: TLC5940 16-bit PWM LED driver

� � � � � � � �

� �

Serial Output

   Two pins: Clk and Data

   New data presented at Data pin on every clock

   Looks like a shift register

� � � � � � � �

� �

Example: STP08DP05
SDI/CLK shifts
data into the 8-bit
shift-register

LE moves data to
the “data latch” so
that it can be seen
on the output

OE controls
whether the data
is enabled to drive
the outputs

R-EXT sets the
current for each
output

Example: STP08DP05
Timing diagram shows
shifting data in, one bit
per clock

Data is transferred to
output register on a
high LE (clocked?)

Data shows up only
when OE is low

This means you can dim
all 8 LEDs using PWM
on the OE signal

� � � � � � � �

	 �

Arduino Code

   Arduino has a built-in function to shift data out for

devices like this

Arduino Code
void shiftOut(uint8_t dataPin, uint8_t clockPin, uint8_t bitOrder, byte val)
 {int i;

 for (i = 0; i < 8; i++) {
 if (bitOrder == LSBFIRST)
 digitalWrite(dataPin, !!(val & (1 << i)));
 else
 digitalWrite(dataPin, !!(val & (1 << (7 - i))));

 digitalWrite(clockPin, HIGH);
 digitalWrite(clockPin, LOW);
 }

 }

10/6/09 

5 

Arduino Code (different chip)
int latchPin = 8; //Pin connected to ST_CP of 74HC595
int clockPin = 12; //Pin connected to SH_CP of 74HC595
int dataPin = 11; //Pin connected to DS of 74HC595

void setup() { //set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);}

void loop() { //count up routine
for (int j = 0; j < 256; j++) {

//ground latchPin and hold low for as long as you are transmitting
digitalWrite(latchPin, LOW);
shiftOut(dataPin, clockPin, LSBFIRST, j);

//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, HIGH);

delay(1000); }}

Arduino Code (STP08DP05)
int latchPin = 8; //Pin connected to LE of STP08DP05
int clockPin = 12; //Pin connected to CLK of STP08DP05
int dataPin = 11; //Pin connected to SDI of STP08DP05
Int OEPin = 10; //Pin connected to OEbar of STP08DP05

void setup() { //set pins to output because they are addressed in the main loop
pinMode(latchPin, OUTPUT);
pinMode(clockPin, OUTPUT);
pinMode(dataPin, OUTPUT);
pinMode(OEPin, OUTPUT);}

void loop() { //count up routine
for (int j = 0; j < 256; j++) {
//ground latchPin and hold low for as long as you are transmitting, OE pin is high…
digitalWrite(latchPin, LOW); digitalWrite(OEPin, HIGH);
shiftOut(dataPin, clockPin, LSBFIRST, j);

//return the latch pin high to signal chip that it
//no longer needs to listen for information
digitalWrite(latchPin, HIGH); digitalWrite(OEPin, LOW);
delay(1000); }}

� � � � � � � �

� �

Chaining Multiple Chips

Choosing a Resistor

� � � � � � � �

� �

STP08DP05 Summary

   Easy chip to use

   Simply use ShiftOut to shift data to the chip

   LE to capture the data

   OE (active-low) to make the data appear (or for PWM)

   Can chain many together to drive lots of LEDs

   Constant-current drivers so only one resistor per chip

   Simple on or off for each LED

SPI Interface

   Serial Peripheral Interface

   Very similar to previous interface

   “official” version has bidirectional data – you can read
back data from the other device at the same time as
you’re sending

   But, you can ignore that and use the same ShiftOut
function if you like

� � � � � � � �

 �

Example: MAX 7219

   Display driver for 7-segment displays

   Can also be used for 8x8 array of LEDS

   Uses PWM/timed-multiplexing to drive the LEDS

   Cycles between each of 8 “digits” fast enough so they all
look ON

� � � � � � � �

� �

� � � � � � � �

� � �

� � � � � � � �

� � �

Common-Cathode
LED array

MAX 7219

   On the one hand – just like STP08DP05

   On the other hand, more complex internal structure

   Each SPI transfer needs to be 16 bits – address/data

   Two Arduino libraries available

   Matrix – built-in to Arduino environment

   LedControl – download from Playground – more
complex control

� � � � � � � �

� � �

Matrix Library

Matrix
Library

� � � � � � � �

� � �

LedControl Library

   Support for more than one MAX 7219

   Support for numbers and letters on 7-segment displays

   Support for rows and columns in an 8x8 matrix

LedControl Library
/* We start by including the library */
#include "LedControl.h”

/* Make a new instance of an LedControl object
 * Params :
 * int dataPin The pin on the Arduino where data gets shifted out (Din on MAX)
 * int clockPin The pin for the clock (CLK on MAX)
 * int csPin The pin for enabling the device (LD/CS on MAX)
 * int numDevices The maximum number of devices that can be controlled
 */
LedControl lc1=LedControl(12,11,10,1);

10/6/09 

14 

LedControl Library
void clearDisplay(int addr);
void setLed(int addr, int row, int col, boolean state);
void setRow(int addr, int row, byte value);
void setColumn(int addr, int col, byte value);
void setDigit(int addr, int digit, byte value, boolean dp);
void setChar(int addr, int digit, char value, boolean dp);

/*
 * Display a character on a 7-Segment display.
 * There are only a few characters that make sense here :
 * '0','1','2','3','4','5','6','7','8','9','0',
 * 'A','b','c','d','E','F','H','L','P',
 * '.','-','_',' '
 */

LedControl Library
//include this file so we can write down a byte in binary encoding
#include <binary.h>

//now setting the leds in the sixth column on the first device is easy
lc.setColumn(0,5,B00001111);

//now setting the leds from the third row on the first device is easy
lc.setRow(0,2,B10110000);

//switch on the led in the 3'rd row 8'th column
//and remember that indices start at 0!
lc.setLed(0,2,7,true);
//Led at row 0 second from left too
lc.setLed(0,0,1,false);

� � � � � � � �

�
 �

MAX 7219 – Setting Resistor

   This resistor goes to Vdd, NOT GND!

   Sets current for each segment (LED)

These values are in kOhms!!!

Multiple MAX chips

� � � � � � � �

� � �

Multiple MAX Chips

   There is an important difference between the way the
setRow() and the setColumn() methods update the
Leds:

   setRow() only needs to send a single int-value to the

MAX72XX in order to update all 8 Leds in a row.

   setColumn() uses the setLed()-method internally to

update the Leds. The library has to send 8 ints to the
driver, so there is a performance penalty when using
setColumn().

   You won't notice that visually when using only 1 or 2
cascaded Led-boards, but if you have a long queue of
devices (6..8) which all have to be updated at the same
time, that could lead to some delay that is actually
visible.

MAX 7219 Summary

   Drives more LEDs than the STP08DP05

   Designed for common-cathode LED arrays

   Set the anodes to true and false

   Pull down the cathodes in sequence

   Uses time-multiplexing to drive them all

   Also supports 7-segment displays

   Slightly more complex interface

� � � � � � � �

� � �

Aside: Vintage 7-seg displays
A B

4 3 2 1 0

3 nc F 1 G

4 E C 2 DP D 0

notch

A B G …

0

1

…

4

Common-Cathode LEDs

Vf = 1.6v

Atmel SPI Support

   The Atmel ATMega328 chip supports hardware-
controlled SPI

   Could be faster than ShiftOut function

   Uses built-in SPI register on ATMega328

   Set up the SPI functionality by setting bits in a control

register

   Write data to the SPI output register (MOSI) which causes
the transfer to happen

   A bit gets set in the control register when it’s done

� � � � � � � �

�
 �

Atmel SPI Support

� � � � � � � �

� � �

SPI library setup

� � � � � � � �

� � �

Transfer a byte using SPI

Magic stuff happens here: By writing data to the SPDR register, the SPI transfer is
Started. When the transfer is complete, the system raises the SPIF bit in the SPSR
Status register. The data that comes back from the slave is in SPDR when you’re
Finished.

SPI Details

� � � � � � � �

� � �

SPI Details

SPI Details

� � � � � � � �

� � �

SPI Details

SPI Summary

   Very general way to send serial information from
Arduino to another chip

   DIY version: ShiftOut

   Fancy version: SPI library

   Both do pretty much the same thing

   Make sure your chip “speaks” SPI

   If it “speaks” I2C, a whole different ball of wax…

� � � � � � � �

� � �

I2C – a.k.a. TWI

   Uses only two wires to communicate

   Simpler?

   Each wire is bidirectional

   Can address up to 128 devices on a single I2C bus

   Actually more complex…

I2C – a.k.a. TWI

� � � � � � � �

� 	 �

I2C – a.k.a. TWI I2C – a.k.a. TWI

Address vs. Data

� � � � � � � �

�
 �

Using I2C/TWI

Luckily Arduino comes with an I2C library!

Roll your Own

   TLC 5940 – 16-output LED driver with PWM on each
output

   12-bits of PWM = 4096 levels of brightness

   16 bits with 12-bits of PWM each = 192 bits to send for
each change of the LEDs

   Communicates with a serial protocol, so you can chain
them together

   BUT, it’s not SPI or I2C!

   Rats…

� � � � � � � �

� � �

TLC 5940

TLC 5940

� � � � � � � �

� � �

PWM…

   Based on the “grayscale counter” which runs at a

frequency that you send the chip

This means there are some relatively complex timings and relationships
Between the different signals that you have to get right

The Arduino 5940 library uses interrupt-driven control to get this right…

PWM…

   Based on the “grayscale counter” which runs at a

frequency that you send the chip

2
2

8196 8196

2

1 1

XLAT

Blank

Timer

� � � � � � � �

�
 �

TLC5940 Library

TLC5940 Library

� � � � � � � �

� � �

TLC5940 Library TLC5940 Library

TLC5940 – setting the resistor

   One resistor sets current for all channels

 Min = 5ma
Max = 120ma

� � � � � � � �

� � �

TLC5940 Summary

   Easy to use – if you use the tlc5940 library!

   Can also use for servo control

   Use the PWM channels to drive servos

   Remember about power issues!

Summary

   There are lots of ways to interface with other chips

   shiftOut() – simple serial

   Output only

   SPI – standard serial protocol – three wires CLK, DATA, En

   Can be bi-directional

   I2C / TWI – two wire protocol – requires a little more
complex addressing and protocol, and pullup resistors

   Can also be bidirectional

   Non-standard serial – read the data sheet carefully!

