Serial Communication

Asynchronous communication Synchronous communication
X RX > clock
Device B Device A > gg{g gi‘: Device B
asynchronous — no clock Synchronous — with clock
Data represented by setting Data represented by setting
HIGH/LOWY at given times HIGH/LOW when “clock™ changes
: : : A single clock wire & data wire for
Separate wires for transmit & receive L
each direction like before
Each device must have good “rhythm” Neither needs good rhythm, but one is the conductor

Is one better than the other? It depends on your application. Async is good if there are only two
devices and they’re both pre-configured to agree on the speed (like your Arduino sketches)

Synchronous is generally better for faster speeds (because you don’t need an accurate clock, just
the ability to watch the clock wire).

12C, aka “Two-wire”

Synchronous serial bus with shared a data line

a little network for your gadgets

SCK clock
Master => ? ®
device
data

Peripheral
device 1

Peripheral Peripheral

device 2 device N

* Up to 127 devices on one bus

* Up to |Mbps data rate

° Really simple protocol (compared to USB,Ethernet,etc)
* Most microcontrollers have it built-in

The shared data line means the devices have to agree on when they should “talk” on it. Like how on
CBs you say “over” and “over & out” to indicate you’re finished so the other person talk.

See “Introduction to 12C”: http://www.embedded.com/story/OEG20010718S0073
“I2C” stands for “Inter-Integrated Circuit”, but no one calls it that

And if your microcontroller doesn’t have 12C hardware built-in, you can fake it by hand in software
(for master devices anyway)

Many 12C devices

non-volatile
memory

L&@ g-lllllll‘ro ' {

gl i

FH Hodule

©.0.0.0.0.0000

-
(04
N
A
B
n
N
(04

And many others

(gyros,keyboards, motors,...)

. temperature &
LCD display humidity sensor

Images from Sparkfun.com,except LCD from matrixorbital.com

Obligatory BlinkM Promo

12C Smart LED

You should be able to buy these from Sparkfun.com in a month or so.

Nintendo Wii Nunchuck

® Standard I2C interface

® 3-axis accelerometer with
| 0-bit accuracy

® 2-axis analog joystick with \
8-bit A/D converter g

® 2 buttons

o $20

If you look at the architecture for the Nintendo Wii and its peripherals, you see an almost un-Nintendo adherence
to standards. The Wii controllers are the most obvioius examples of this. The Wii controller bus is standard 12C.
The Wii remote speaks Bluetooth HID to the Wii (or your Mac or PC)

Because it uses standard 12C, it’s easy to make the Nunchuck work with Arduino, Basic Stamp or most other
microcontrollers.

See: http://www.wiili.org/index.php/Wiimote/Extension_Controllers/Nunchuk
and: http://www.windmeadow.com/node/42
and: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

And then there’s the Wii Remote, besides Bluetooth HID, it also has accelerometers, buttons, speaker, memory, and
is [2C master.

Accelerometer?

Measures acceleration
(changes in speed)

Like when the car
pushes you into the seat

Gravity is acceleration

So, also measures tilt

horizontal tilt right tilt left

Nunchuck Accelerometer

Wii Remote & Nunchuck
accelerometer axes

I’m not sure if | have the Nunchuck one right.

Wiimote axis image from http://www.wiili.org/index.php/Wiimote

|2C on Arduino

|2C built-in on Arduino’s

ATmegal 68 chip

NAOT-S9TVOINLY

90 -

NN WWW.ardulno.cc
Sl S POKER anaLoe i, @
x.m5V/6nd Uin-0: 12314557

r
(7y)
(7))
D
m —_ —_
I I
\ c c
o .bo bo
= (7)) (7y)
DN A \/
L
S A O
5 v uv
= v wu
’e 4 5
= £ Cc
W b0 bo
£ O O
Q I o
n c c
D L <
® ® ®

Arduino “Wire” library

Writing Data

Load Wire Iibl"ary — include <ire.hs
. ol :g:et.up() {
JOln I2C bus) '.n'lre.beglrl(}; 4 Jjoin 12c bus {address optional for master)
(as master))

byte X = @;

Start sending Laid oo
\ '.n'lre:L-'éug?rérnn:z:ru1:2::2:1|:|r'|(4}; /7 transmit to device #

Wire.send{"x is "); /7 sends five bytes
Send data > Wire.send{x); /7 sends one byte
Wire.endTransmission{); J¢ stop transmitting
Stop sending —
P &
de Loy {588);
¥

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Arduino “Wire” library

Reading Data

#include lire.h=

JOln I2C bUS — void setup() {
(as maSter) ‘) ‘.'.'11‘E.E|Exglr'|(); 7 Join 12c bus {address optional for master)
Serial.begin(960@); // start serial for output
b

i void loop{) {
Request data from device = | tire.rcaiestiron(z, 6); 7/ request & bytes fron slave device #

while(Wire.available{)) { // slave may send less than requested
char ¢ = Wire.receive(); // receive a byte as character
/ Serial.print(c); /¢ print the character
Get data }
de lay {508);

I

What kinds of interactions you can have depends on
the device you're talking to

I“

Most devices have several “‘commands’

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Wiring up the Nunchuck

We could hack off the connector
and use the wires directly

But instead let’s use this
little adapter board

Wii Nunchuck Adapter

Nunchuck Pinout Adapter Pinout

€006 W

(looking into Nunchuck connector)

Note there *are* labels on the adapter, but they’re wrong. So you’ll have to trust the diagrams
above

EXED

i m e o © ~ o o O

L
s E R R R R
+5V. . 4 SCK «

SDA

Pluggin’ in the ‘chuck

Trying the Nunchuck

e 06 Arduino - 0010 Alpha

“NunchuckPrint”

#include <ire.h= A

void ZS’Et-Up {) m
Serial.begin{19200);

Read the Nunchuck ¢
every |/10th of a second =i i weripeys
& print out all the data:

void lDDp()
. . .. {
-]O)’StICk position (X,)’) nunchuck_get_data);
nunchuck_print_data();
- accelerometer (x,y,z) de Loy (168);
b

- buttons Z,C

X
h
Y . |
\ 30;:123;130 acc:141;160;178
joy:123,130 acc:141,160,176
joy:123,130
j

Uses the beginnings of an Arduino library I’'m writing.

Adding a Servo

e 06 Arduino - 0010 Alpha

®@

“NunchuckServo”

void checkNunchuck ()

1
IT(loop_cnt = 188 } { Z¢ loop I :):3: is every 1msec, this is every 1'@
Move the servo by
nunchuck _get_data{);
. nunchuck_print_data{);
moving your arm |
float tilt = nunchuck_accelx(); /¢ x-axis, in this case range
tilt = (tilt _ 7@) ¥ 1.5; /¢ convert to angle in degrees,
pulseWidth = (tilt * 9) + minPulse; // convert angle to microsec
loop_cnt = B; // reset for
¥
b L L4+
You're a cyborg! oop-entes ;

Done uploading.
Binary sketch size: 6548 bytes (of a 14336 byte maximum)
Also press the Z button to
flash the pin 13 LED

Utilizes the task slicing mentioned before

Nunchuck Servo

Segway Emulator

Same basic code as NunchuckServo.
For details see: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

Going Further

® Servos

® Hook several together to create a multi-
axis robot arm

® Make a“servo recorder” to records your
arm movements to servo positions and
plays them back

® Great for holiday animatronics

Going Further

® |2C devices
® Try out some other devices

® |ust string them on the same two wires used
for the Nunchuck

® Cooperative Multitasking
® Try making a theremin with nunchuck & piezo

® See if previous examples can be made more
responsive

Going Further

® Nunchuck

® |t’s a freespace motion sensor. Control
anything like you're waving a magic wand!

® What about the joystick?! Ve didn’t even
get a chance to play with that

® Alternative input device to your
computer: control Processing, etc.

Summary

You've learned many different physical building blocks

piezos

motors accelerometers >€FVos

Summary

And you've learned many software building blocks

serial
pulse width communication
modulation nC
analog 1/0O
data driven digital I/O
code
frequency
modulation

multiple tasks

Summary

Hope you had fun and continue playing with Arduino

Feel free to contact me to chat about this stuff

END Class 4

http://todbot.com/blog/bionicarduino/

Tod E. Kurt

tod@todbot.com

Feel free to email me if you have any questions.

mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com

