
Last Time 
u  Priority-based scheduling 

Ø  Static priorities 
Ø  Dynamic priorities 

u  Schedulable utilization 
u  Rate monotonic rule: Keep utilization below 69% 



Today 
u  Response time analysis 
u  Blocking terms 
u  Priority inversion 

Ø  And solutions 
u  Release jitter 
u  Other extensions 



Response Time vs. RM 
u  Rate monotonic result 

Ø  Tells us that a broad class of embedded systems meet their 
time constraints: 
•  Scheduled using fixed priorities with RM or DM priority 

assignment 
•  Total utilization not above 69% 

Ø  However, doesn’t give very good feedback about what is 
going on with a specific system 

u  Response time analysis 
Ø  Tells us for each task, what is the longest time between 

when it is released and when it finishes 
Ø  Then these can be compared with deadlines 
Ø  Gives insight into how close the system is to meeting / not 

meeting its deadline 
Ø  Is more precise (rejects fewer systems) 



Computing Response Time 
u  WC response time of highest priority task R1 

Ø  R1 = C1 

Ø  Hopefully obvious 

u  WC response time of second-priority task R2  
Ø  Case 1: R2 ≤ T1 

•  R2 = C2 + C1 
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More Second-Priority 
u  Case 2:  T1 < R2 ≤ 2T1 

Ø  R2 = C2 + 2C1 

u  Case 3:  2T1 < R2 ≤ 3T1 
Ø  R2 = C2 + 3C1 

u  General case of the second-priority task: 
Ø  R2 = C2 + ceiling ( R2 / T1 ) C1 
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Task i Response Time 
u  General case: 

u  hp(i) is the set of tasks with priority higher than I 
Ø  Only higher-priority tasks can delay a task 

u  Problem with using this equation in practice? 
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Computing Response Times 
u  Rewrite as a recurrence relation and solve by 

iterating: 

u  Finished when Ri
n+1 = Ri

n 

Ø  Or when Ri
n > Di 

u  Choose Ri
0 = 0 or Ri

0 = Ci 
Ø  There may be many solutions to the recurrence 
Ø  These starting points guarantee convergence to the 

smallest solution (unless there is divergence) 
u  Result is invalid if Ri > Ti 

Ø  Why? 
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Response Time Example 
u  Task 1: T = 30, D = 30, C = 10 
u  Task 2: T = 40, D = 40, C = 10 
u  Task 3: T = 52, D = 52, C = 12 
u  Utilization = 81% – Rejected by the rate monotonic 

test! 

u  R1 = 10 
u  R2 = 20 
u  R3 = 52 
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Sharing Resources 
u  So far tasks are assumed to be independent 

Ø  Not allowed to block (e.g. on a network device) 
Ø  Not allowed to contend for shared resources 

u  Big problem in practice! 
u  Solution: 

Ø  Compute worst-case blocking time for each task 
Ø  Longest time that task is delayed by a lower-priority task 
Ø  Why just lower priority?  

u  Now we can analyze the system again: 
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Computing Blocking Terms 
u  How do we compute blocking terms? 

Ø  Depends on the synchronization protocol 
u  Tasks synchronize by disabling interrupts 

Ø  Best answer: Each task gets blocking term with length of 
the longest critical section in a lower-priority task 

Ø  Simpler answer: Each task gets blocking term with length of 
the longest critical section in any task 

Ø  Why do these work? 
u  Tasks synchronize using mutexes 

Ø  Blocking term generally impossible to bound – oops! 
Ø  Standard thread locks are unfriendly to real-time systems 

•  Lock wait queue is FIFO 
Ø  Possible solution: Priority queues for mutexes 



Priority Inversion 
u  Priority inversion: Low-priority task delays a high 

priority task 
Ø  Mutexes (even with priority queuing) provide unbounded 

priority inversion 
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Priority Inversion Case Study 
u  Mars Pathfinder 

Ø  Lands on Mars July 4 1997 
Ø  Mission is successful 

u  Behind the scenes… 
Ø  Sporadic total system resets on the rover 
Ø  Caused by priority inversion 
Ø  Debugged on the ground, software patch uploaded to fix 

things 
u  Details 

Ø  Rover controlled by a single RS6000 running vxWorks 
Ø  Rover devices polled over 1553 bus 
Ø  At 8 Hz bc_sched task sets up bus transactions 
Ø  bc_dist task runs (also at 8 Hz) to read back data 



More Pathfinder 
u  Symptom: 

Ø  bc_sched sometimes was not finished by the time bc_dist 
ran 

Ø  This triggered a system reset 
•  Should never happen since these tasks are high priority 

u  Problem: bc_sched shared a mutex with ASI/MET 
task, which does meteorological science at low 
priority 
Ø  Occasionally the classic priority inversion happened when 

there were long-running medium priority tasks 
u  Solution: 

Ø  vxWorks supports “priority inheritance” with a global flag 
Ø  They turned it on 



Priority Inversion Solutions 
1.  Avoid blocking – disable interrupts instead 

u  Pros: 
u  Efficient 
u  Simple 

u  Con: 
u  Also delays unrelated, high priority tasks 

2.  Immediate priority ceiling protocol – before locking, 
raise priority to highest priority of any thread that 
can touch that semaphore 
u  Pros: 

u  Fairly simple 
u  Less blocking of unrelated tasks 

u  Cons: 
u  Requires ahead-of-time system analysis 
u  Still has some pessimistic blocking 



Priority Inversion Solutions 
3.  Priority inheritance protocol – When a task is 

blocking other tasks (by holding a mutex) it 
executes at the priority of the highest-priority 
blocked task  
u  Pros 

u  No pessimistic blocking 
u  Cons 

u  Complicated in presence of nested locking 
u  Not that efficient 
u  Blocking terms larger than IPCP 

u  Other solutions exist, such as lock-free 
synchronization 



IPCP Bonus 
u  In IPCP, raising priority prevents anyone else who 

might access a resource from running 
Ø  So why take a lock at all? 
Ø  Turns out that locking is not necessary – raising priority is 

enough 
Ø  HOWEVER: Task must not voluntarily block (e.g. on disk or 

network) while in a critical section 



Overheads 
u  A real RTOS requires time to: 

Ø  Block a task 
Ø  Make a scheduling decision 
Ø  Dispatch a new task 
Ø  Handle timer interrupts 

u  For a well-designed RTOS these times can be 
bounded 
Ø  Worst-case blocking time of the RTOS needs to be added to 

each task’s blocking term 
Ø  2x worst-case context switch time needs to be added to 

each task’s WCET 
•  We always “charge” the cost of a context switch to the 

higher-priority task 



Release Jitter 
u  Release jitter Ji – Time between invocation of task i 

and time at which it can actually run 
Ø  E.g. task becomes conceptually runnable at the start of its 

period 
•  But must wait for the next timer interrupt before the 

scheduler sees it and dispatches it 
Ø  Or, task would like to run but must wait for network data to 

arrive before it actually runs 
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Other Extensions 
u  Sporadically periodic tasks 

Ø  Task has an “outer period” and smaller “inner period” 
Ø  Models bursty processing like network interrupts 

u  Sporadic servers 
Ø  Provide rate-limiting for truly aperiodic processing 

•  E.g. interrupts from an untrusted device 
u  Arbitrary deadlines 

Ø  When Di > Ti previous equations do not apply 
Ø  Can rewrite  

u  Precedence constraints 
Ø  Task A cannot run until Task B has completed 

•  Models scenario where tasks feed data to each other 
Ø  Makes it harder to schedule a system 



Summary 
u  Priority based scheduling 

Ø  It’s what RTOSs support 
Ø  A strong body of theory can be used to analyze these 

systems 
Ø  Theory is practical: Many real-world factors can be modeled 

u  Response time analysis – supports worst-case 
response time for each priority-based task 
Ø  Blocking terms 
Ø  Release jitter 

u  Priority inversion can be a major problem 
Ø  Solutions have interesting tradeoffs 


