
Last Time
u  Priority-based scheduling

Ø  Static priorities
Ø  Dynamic priorities

u  Schedulable utilization
u  Rate monotonic rule: Keep utilization below 69%

Today
u  Response time analysis
u  Blocking terms
u  Priority inversion

Ø  And solutions
u  Release jitter
u  Other extensions

Response Time vs. RM
u  Rate monotonic result

Ø  Tells us that a broad class of embedded systems meet their
time constraints:
•  Scheduled using fixed priorities with RM or DM priority

assignment
•  Total utilization not above 69%

Ø  However, doesn’t give very good feedback about what is
going on with a specific system

u  Response time analysis
Ø  Tells us for each task, what is the longest time between

when it is released and when it finishes
Ø  Then these can be compared with deadlines
Ø  Gives insight into how close the system is to meeting / not

meeting its deadline
Ø  Is more precise (rejects fewer systems)

Computing Response Time
u  WC response time of highest priority task R1

Ø  R1 = C1

Ø  Hopefully obvious

u  WC response time of second-priority task R2
Ø  Case 1: R2 ≤ T1

•  R2 = C2 + C1

1
2

T2 T1

1

R2 R1

More Second-Priority
u  Case 2: T1 < R2 ≤ 2T1

Ø  R2 = C2 + 2C1

u  Case 3: 2T1 < R2 ≤ 3T1
Ø  R2 = C2 + 3C1

u  General case of the second-priority task:
Ø  R2 = C2 + ceiling (R2 / T1) C1

1
2

T2 T1

1

R2 R1 2T1

1
2

Task i Response Time
u  General case:

u  hp(i) is the set of tasks with priority higher than I
Ø  Only higher-priority tasks can delay a task

u  Problem with using this equation in practice?

∑
∈∀

⎥⎥
⎤

⎢⎢
⎡+=
)(ihpj

j
j

iii CT
RCR

Computing Response Times
u  Rewrite as a recurrence relation and solve by

iterating:

u  Finished when Ri
n+1 = Ri

n

Ø  Or when Ri
n > Di

u  Choose Ri
0 = 0 or Ri

0 = Ci
Ø  There may be many solutions to the recurrence
Ø  These starting points guarantee convergence to the

smallest solution (unless there is divergence)
u  Result is invalid if Ri > Ti

Ø  Why?

∑
∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
+=

)(

1

ihpj
j

j

n
ii

n
i CT

RCR

Response Time Example
u  Task 1: T = 30, D = 30, C = 10
u  Task 2: T = 40, D = 40, C = 10
u  Task 3: T = 52, D = 52, C = 12
u  Utilization = 81% – Rejected by the rate monotonic

test!

u  R1 = 10
u  R2 = 20
u  R3 = 52

∑
∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
+=

)(

1

ihpj
j

j

n
ii

n
i CT

RCR

Sharing Resources
u  So far tasks are assumed to be independent

Ø  Not allowed to block (e.g. on a network device)
Ø  Not allowed to contend for shared resources

u  Big problem in practice!
u  Solution:

Ø  Compute worst-case blocking time for each task
Ø  Longest time that task is delayed by a lower-priority task
Ø  Why just lower priority?

u  Now we can analyze the system again:

∑
∈∀

+
⎥
⎥

⎤
⎢
⎢

⎡
++=

)(

1

ihpj
j

j

n
iii

n
i CT

RBCR

Computing Blocking Terms
u  How do we compute blocking terms?

Ø  Depends on the synchronization protocol
u  Tasks synchronize by disabling interrupts

Ø  Best answer: Each task gets blocking term with length of
the longest critical section in a lower-priority task

Ø  Simpler answer: Each task gets blocking term with length of
the longest critical section in any task

Ø  Why do these work?
u  Tasks synchronize using mutexes

Ø  Blocking term generally impossible to bound – oops!
Ø  Standard thread locks are unfriendly to real-time systems

•  Lock wait queue is FIFO
Ø  Possible solution: Priority queues for mutexes

Priority Inversion
u  Priority inversion: Low-priority task delays a high

priority task
Ø  Mutexes (even with priority queuing) provide unbounded

priority inversion

3

2

1

P(s) – succeeds

P(s) – blocks T1 preemption

Priority Inversion Case Study
u  Mars Pathfinder

Ø  Lands on Mars July 4 1997
Ø  Mission is successful

u  Behind the scenes…
Ø  Sporadic total system resets on the rover
Ø  Caused by priority inversion
Ø  Debugged on the ground, software patch uploaded to fix

things
u  Details

Ø  Rover controlled by a single RS6000 running vxWorks
Ø  Rover devices polled over 1553 bus
Ø  At 8 Hz bc_sched task sets up bus transactions
Ø  bc_dist task runs (also at 8 Hz) to read back data

More Pathfinder
u  Symptom:

Ø  bc_sched sometimes was not finished by the time bc_dist
ran

Ø  This triggered a system reset
•  Should never happen since these tasks are high priority

u  Problem: bc_sched shared a mutex with ASI/MET
task, which does meteorological science at low
priority
Ø  Occasionally the classic priority inversion happened when

there were long-running medium priority tasks
u  Solution:

Ø  vxWorks supports “priority inheritance” with a global flag
Ø  They turned it on

Priority Inversion Solutions
1.  Avoid blocking – disable interrupts instead

u  Pros:
u  Efficient
u  Simple

u  Con:
u  Also delays unrelated, high priority tasks

2.  Immediate priority ceiling protocol – before locking,
raise priority to highest priority of any thread that
can touch that semaphore
u  Pros:

u  Fairly simple
u  Less blocking of unrelated tasks

u  Cons:
u  Requires ahead-of-time system analysis
u  Still has some pessimistic blocking

Priority Inversion Solutions
3.  Priority inheritance protocol – When a task is

blocking other tasks (by holding a mutex) it
executes at the priority of the highest-priority
blocked task
u  Pros

u  No pessimistic blocking
u  Cons

u  Complicated in presence of nested locking
u  Not that efficient
u  Blocking terms larger than IPCP

u  Other solutions exist, such as lock-free
synchronization

IPCP Bonus
u  In IPCP, raising priority prevents anyone else who

might access a resource from running
Ø  So why take a lock at all?
Ø  Turns out that locking is not necessary – raising priority is

enough
Ø  HOWEVER: Task must not voluntarily block (e.g. on disk or

network) while in a critical section

Overheads
u  A real RTOS requires time to:

Ø  Block a task
Ø  Make a scheduling decision
Ø  Dispatch a new task
Ø  Handle timer interrupts

u  For a well-designed RTOS these times can be
bounded
Ø  Worst-case blocking time of the RTOS needs to be added to

each task’s blocking term
Ø  2x worst-case context switch time needs to be added to

each task’s WCET
•  We always “charge” the cost of a context switch to the

higher-priority task

Release Jitter
u  Release jitter Ji – Time between invocation of task i

and time at which it can actually run
Ø  E.g. task becomes conceptually runnable at the start of its

period
•  But must wait for the next timer interrupt before the

scheduler sees it and dispatches it
Ø  Or, task would like to run but must wait for network data to

arrive before it actually runs

∑
∈∀

⎥⎥
⎤

⎢⎢
⎡ +++=
)(ihpj

j
j

ii
iii CT

JRBCR

Other Extensions
u  Sporadically periodic tasks

Ø  Task has an “outer period” and smaller “inner period”
Ø  Models bursty processing like network interrupts

u  Sporadic servers
Ø  Provide rate-limiting for truly aperiodic processing

•  E.g. interrupts from an untrusted device
u  Arbitrary deadlines

Ø  When Di > Ti previous equations do not apply
Ø  Can rewrite

u  Precedence constraints
Ø  Task A cannot run until Task B has completed

•  Models scenario where tasks feed data to each other
Ø  Makes it harder to schedule a system

Summary
u  Priority based scheduling

Ø  It’s what RTOSs support
Ø  A strong body of theory can be used to analyze these

systems
Ø  Theory is practical: Many real-world factors can be modeled

u  Response time analysis – supports worst-case
response time for each priority-based task
Ø  Blocking terms
Ø  Release jitter

u  Priority inversion can be a major problem
Ø  Solutions have interesting tradeoffs

