Last Time

- Real-time scheduling using cyclic executives
Today

- Real-time scheduling using priorities
 - How to assign priorities?
 - Will the assigned priorities work?
 - What can we say in general about the scheduling algorithms?
Real-Time Review 1

◆ Motivation
 - Your car’s engine control CPU overloads
 - Airplane doesn’t update flaps on time

◆ System contains n periodic tasks T_1, \ldots, T_n

◆ T_i is specified by (P_i, C_i, D_i)
 - P is period
 - C is execution cost (also called E)
 - D is relative deadline

◆ Task T_i is released at start of period, executes for C_i time units, must finish before D_i time units have passed
 - Often $P_i = D_i$, and in this case we omit D_i
Given:
- A set of real-time tasks
- A scheduling algorithm

Is the task set schedulable?
- Yes → all deadlines met, forever
- No → at some point a deadline might be missed

Ways to schedule
- Cyclic executive
- Static priorities
- Dynamic priorities
- ...
Cyclic Exec. Vs. Priorities

- Priorities are more flexible but less predictable
- Priorities may be fixed at design time or computed at runtime
Today’s Assumptions

- Tasks are running on an RTOS
 - Each task runs in its own preemptive thread
 - Scheduled using priorities

- Uniprocessor embedded system
 - If system has multiple processors we analyze them separately
 - This works unless we want tasks to migrate between processors

- Tasks don’t synchronize using locks
 - Later we’ll see how to avoid this assumption

- No OS overhead
 - Later we’ll see how to avoid this assumption
How to assign priorities?

◆ Rate monotonic (RM)
 ➢ Shorter period tasks get higher priority
◆ Deadline monotonic (DM)
 ➢ Tasks with shorter relative deadlines get higher priority
◆ Both RM and DM…
 ➢ Have good theoretical properties
 ➢ Work well in practice
◆ Other considerations
 ➢ Criticality
 ➢ Output jitter requirement
Example

◆ System with 4 tasks:
 ➢ $T_1 = (4,1), T_2 = (5, 1.8), T_3 = (20, 1), T_4 = (20, 2)$

◆ What is the RM priority assignment?
◆ What is the DM priority assignment?

◆ Will these priority assignments work?
 ➢ Remember: work means no deadlines missed, ever
Utilization

- **Utilization of a task:** C / P
- **Utilization of a task set:** Sum of task utilizations
- **Schedulable utilization** of a scheduling algorithm:
 - Every set of periodic tasks with utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm
- **Higher schedulable utilization** is better
- **Schedulable utilization** is always ≥ 0.0 and ≤ 1.0
- **Question:** What is the schedulable utilization of...
 - FIFO scheduling?
 - EDF scheduling?
 - Generic fixed priority scheduling?
 - RM scheduling?
How about dynamic priorities?

- Dynamic priority means that priorities are not fixed at design time – the system can keep changing them as it runs.

- Example algorithms
 - Earliest deadline first (EDF)
 - Least slack time first (LST)
 - First-in first-out (FIFO)
 - Last-in first-out (LIFO)

- Which of these work, for the example from the previous slide?
FIFO Schedulable Utilization

- $U_{FIFO} = 0.0$
 - Oops!

- **Proof**
 - Pick a utilization u
 - Pick an arbitrary period p
 - Create a task set with two tasks
 - Task 1 has $C = p * u/2$, $P = p$ (utilization = $u/2$)
 - Task 2 has $C = p$, $P = p * 2/u$ (utilization = $u/2$)
 - This task set has utilization u and is not schedulable
EDF Schedulable Utilization

- $U_{\text{EDF}} = 1.0$
 - As long as we ignore synchronization between tasks
- We'll return to this result later
Fixed Priority
Schedulable Utilization

- \(U_{FP} = 0 \)
 - \(U_{RM} = ? \)
 - \(U_{RM} \neq 0 \)
 - \(U_{RM} \neq 1 \)

\[
\begin{align*}
T_1 &= (2, 1, 2) \\
T_2 &= (5, 2.5, 5) \\
\end{align*}
\]

\[
U = \frac{e_1}{p_1} + \frac{e_2}{p_2} = 1 \leq 100\%
\]
Simply Periodic Case

- A set of tasks is simply periodic if, for every pair of tasks, one period is multiple of other period

- Result: A system of simply periodic, independent, preemptible tasks whose relative deadlines are equal to their periods is schedulable according to RM iff their total utilization does not exceed 1.0

- Proof:
 - Assume T_i misses deadline at time t
 - t is integer multiple of P_i and $p_k, \forall p_k < p_i$
 - Then, total time to complete jobs with deadline t is:
 \[
 \sum_{k=1}^{i} \frac{t \cdot e_k}{p_k} = t \cdot U_i = t \cdot \sum_{k=1}^{i} \frac{e_k}{p_k}
 \]
 - T_i can only miss deadline if $U > 1.0$
General RM Case

Theorem

- n independent, preemptible, periodic tasks with $D_i = P_i$ can be feasibly scheduled by RM if its total utilization U is less or equal to $n(2^{1/n} - 1)$

- For $n=1$, $U = 1.0$
- For $n=2$, $U \approx 0.83$
- For $n=\infty$, $U \approx 0.69$
RM Proof Sketch

◆ General idea
 - Find the most-difficult-to-schedule system of n tasks among all difficult-to-schedule systems of n tasks

◆ Difficult-to-schedule
 - Fully utilizes processor for some time interval
 - Any increase in execution time would make system unschedulable

◆ Most-difficult-to-schedule
 - System with lowest utilization among difficult-to-schedule systems
 - Difficult-to-schedule situations happen when all tasks are released at once
 - First prove that this is the most difficult case
 - Then prove that in this case, the system is schedulable
Summary

- Fixed priority scheduling
- Not optimal – So why do we care?
 - Simple
 - Efficient
 - Easy to implement on standard RTOSs
 - Predictable – During overload low-priority jobs lose

- Fixed priority scheduling is heavily used in real embedded systems