
Last Time

u  To write C and C++ programs that work, you
have to understand a lot of subtle issues
Ø  Signed / unsigned rules
Ø  Sequence points
Ø  Implementation defined behavior
Ø  Unspecified behavior
Ø  Undefined behavior

u  The C99 Standard is a free download
Ø  Google for n1124.pdf

Today

u  Volatile
Ø  How to use it
Ø  How not to use it

4

u  Example:
Ø  This AVR has no hardware multiply unit
Ø  Let’s measure the speed of software multiply

u  Solution using Timer 1:
Ø  Set timer to an appropriate rate
Ø  Read TCNT1
Ø  Do a multiply
Ø  Read TCNT1 again
Ø  Subtract first reading from second

#define TCNT1 (*(uint16_t *)(0x4C))

signed char a, b, c;

uint16_t time_mul (void)
{
 uint16_t first = TCNT1;
 c = a * b;
 uint16_t second = TCNT1;
 return second - first;
}

$ avr-gcc -Os -S -o - reg1.c
time_mul:
 lds r22,a
 lds r24,b
 rcall __mulqi3
 sts c,r24
 ldi r24,lo8(0)
 ldi r25,hi8(0)
 ret

#define TCNT1 (*(volatile uint16_t *)(0x4C))

signed char a, b, c;

uint16_t time_mul (void)
{
 uint16_t first = TCNT1;
 c = a * b;
 uint16_t second = TCNT1;
 return second - first;
}

avr-gcc -Os -S -o - reg2.c
time_mul:
 in r18,0x2c
 in r19,0x2d
 lds r22,a
 lds r24,b
 rcall __mulqi3
 sts c,r24
 in r24,0x2c
 in r25,0x2d
 sub r24,r18
 sbc r25,r19
 ret

In a header file…
// Timer/Counter 1
#define TCNT1 (*(volatile uint16_t *)(0x4C))

// T/C 1 Input Capture Register
#define ICR1 (*(volatile uint16_t *)(0x46))
#define ICR1L (*(volatile uint8_t *) (0x46))
#define ICR1H (*(volatile uint8_t *) (0x47))

// T/C 1 Output Compare Register
#define OCR1B (*(volatile uint16_t *)(0x48))

ColdFire Example
u  C code you might write:
/* Enable signal as GPIO */
void make_pin0_gpio (void) {
 MCF_GPIO_PTCPAR = MCF_GPIO_PTCPAR_DTIN0_GPIO;
}

u  Relevant reprocessor definitions:
typedef volatile uint8 vuint8;
#define MCF_GPIO_PTCPAR \
 (*(vuint8 *)(&__IPSBAR[0x10006F]))
#define MCF_GPIO_PTCPAR_DTIN0_GPIO (0)

ColdFire Example
u  After the C processor has run, the code is:
void make_pin0_gpio (void) {
 (*(vuint8 *)(&__IPSBAR[0x10006F])) = (0);
}

u  So, this is the code the CodeWarrior compiler
actually sees and compiles

u  Note: vuint8 * is pointer-to-volatile, not
volatile-pointer
Ø  The distinction is crucial

u  Hardware register access is typically done
using pointers-to-volatile

Compiler Output

_make_pin0_gpio:
0x00000000 link a6, #0
0x00000004 moveq #0, d0
0x00000006 move.b d0, ___IPSBAR+1048687
0x0000000C unlk a6
0x0000000E rts

Another ColdFire Example
u  C code you might write:

/* Enable signal as GPIO */
void make_pin0_gpio (void) {
 MCF_GPIO_PTCPAR |= MCF_GPIO_PTCPAR_DTIN0_GPIO;
}

u  Expands out to:

void make_pin0_gpio_bogus (void) {
 (*(vuint8 *)(&__IPSBAR[0x10006F])) |= (0) ;
}

Another ColdFire Example

_make_pin0_gpio_bogus:
0x00000000 link a6, #0
0x00000004 move.b ___IPSBAR+1048687, d0
0x0000000A unlk a6
0x0000000C rts
0x0000000E nop

u  What happened?
u  Is the code what we wanted?
u  Is the compiler correct?

Device Registers ≠ RAM

u  Each read may return a different value
Ø  Free-running timer

u  Writes may be ignored or result in undefined
behavior
Ø  Read-only registers

u  Reads can be writes
Ø  HCS12 interrupt flags cleared by writing 1

u  Reads and writes can be side effecting
Ø  Launch a missile, raise the control rods, …

u  RAM-like semantics are ingrained in language and
compiler design
Ø  Useless loads eliminated
Ø  Redundant loads avoided by caching values in registers
Ø  Operations with constant arguments evaluated at compile

time
Ø  Similar transformations for stores

u  Memory behavior of optimized executable may be
very different from source code

u  Basic problem: Optimizations are in tension with
HW register accesses

u  Improving the optimizer breaks programs that
previously worked
Ø  Lots of latent errors in real embedded programs
Ø  Problems not seen because compiler aren’t smart enough

u  Today we look at creating embedded systems that
can’t be broken by any future optimizer

u  In early C there was no good solution

 “At least one version of the UNIX Portable C

Compiler (PCC) had a special hack to recognize
constructs like

((struct xxx *)0177450)->zzz
 as being potential references to I/O space (device

registers) and would avoid excessive optimization
involving such expressions”

u  ANSI C (a.k.a. C89) added volatile
u  Informal definition of volatile

Ø  Every read/write to a volatile variable that would be
performed by a C interpreter must result in a load/store in
the executable code, in the same order

Ø  Accesses shouldn’t be added or removed
Ø  Accesses shouldn’t be reordered (much)

u  Volatile is a type qualifier
u  Any type can be qualified

Ø  New types can be built from qualified types
u  Rules for volatile are similar to, but not the same

as, const

u  Every level of indirection can be independently
qualified:

int *p;
volatile int *p_to_vol;
int *volatile vol_p;
volatile int *volatile vol_p_to_vol;

u  Making a struct or union volatile is same as
making all members volatile

u  Volatile bitfields are a little tricky

u  Does this make sense?

const volatile int *p_to_const_vol;

u  Yes: This is the correct declaration for a read-only
timer register

Uses for Volatile

u  Volatile use 1: HW register accesses

u  Volatile use 2: Data shared between
interrupts and main()

u  Volatile use 3: Data shared between threads

u  Volatile use 4: Delay loops

u  Now: Eight ways to create broken
embedded code using volatile

#1: Not Enough Volatile

int done;

__attribute((signal)) void __vector_4 (void)
{
 done = 1;
}

void wait_for_done (void) {
 while (!done) ;
}

[regehr@babel ~]$ avr-gcc -Os wait.c -S -o -
__vector_4:
 push r0
 in r0,__SREG__
 push r0
 push r24
 ldi r24,lo8(1)
 sts done,r24
 pop r24
 pop r0
 out __SREG__,r0
 pop r0
 reti

wait_for_done:
 lds r24,done
.L3:
 tst r24
 breq .L3
 ret

wait_for_done:

.L3:

 lds r24,done

 tst r24

 breq .L3

 ret

Make done volatile

Key property:
Visibility

#2: Too Much Volatile

u  Some embedded developers make almost
all globals volatile
Ø  Volatile is not a substitute for thinking

u  Can seriously impact application
performance
Ø  Hard to get the performance back since slow

code is scattered everywhere

#3: Misplaced Qualifier

int *volatile REG = 0xfeed;
*REG = new_val;
u  Oops!
u  Typedefs are helpful:
typedef volatile int vint;
vint *REG = 0xfeed;

#4: Inconsistent
Qualification

u  In Linux 2.2.26
u  arch/i386/kernel/smp.c:125
volatile unsigned long ipi_count;
u  include/asm-i386/smp.h:178
extern unsigned long ipi_count;
u  2.3.x has similar problems
u  Modern compilers will catch this

u  Typecasts are another way to get
inconsistent qualification

u  Don’t ignore compiler warnings about this!

#5: Ordering with Non-
Volatile

volatile int ready;
int message[100];

void foo (int i)
{
 message[i/10] = 42;
 ready = 1;
}

$ gcc-4.3 -O3 barrier1.c -S -o -
foo:
 movl 4(%esp), %ecx
 movl $1717986919, %edx
 movl $1, ready
 movl %ecx, %eax
 imull %edx
 sarl $31, %ecx
 sarl $2, %edx
 subl %ecx, %edx
 movl $42, message(,%edx,4)
 ret

What happened?

u  Non-volatile accesses can move around
volatile accesses

u  Volatile accesses cannot move around
each other
Ø  Unless there are no intervening sequence

points

u  Solution 1: Make all shared variables
volatile

u  Solution 2: Use a “compiler barrier”

Compiler Barrier

u  Tells the compiler:
Ø  No code motion past the barrier in either

direction
Ø  Store all register values to RAM before the barrier
Ø  Reload values from RAM into registers after the

barrier

GCC Barrier

volatile int ready;
int message[100];

void foo (int i)
{
 message[i/10] = 42;
 asm volatile ("" : : : "memory");
 ready = 1;
}

$ gcc-4.3 -O3 barrier2.c -S -o -
foo:
 movl 4(%esp), %ecx
 movl $1717986919, %edx
 movl %ecx, %eax
 imull %edx
 sarl $31, %ecx
 sarl $2, %edx
 subl %ecx, %edx
 movl $42, message(,%edx,4)
 movl $1, ready
 ret

u  Compiler barriers are analogous to HW memory
system barriers

u  Not all compilers support barriers
Ø  CodeWarrior for ColdFire does not, unfortunately!
Ø  If not, inserting a call to an external function may work

u  Good RTOS lock/unlock functions are compiler
barriers
Ø  Often, only because they are not inlined
Ø  Problematic as compilers get smarter

Old Locks in TinyOS

char __nesc_atomic_start (void)
{
 char result = SREG;
 __nesc_disable_interrupt();
 return result;
}

void __nesc_atomic_end (char save)
{
 SREG = save;
}

New Locks in TinyOS
char__nesc_atomic_start(void)
{
 char result = SREG;
 __nesc_disable_interrupt();
 asm volatile("" : : : "memory");
 return result;
}

void __nesc_atomic_end(char save)
{
 asm volatile("" : : : "memory");
 SREG = save;
}

#6: Confuse Volatile and Atomic

u  Accesses to volatile variables are not guaranteed
to be atomic

u  C doesn’t guarantee atomicity of any access
Ø  However, char-, short-, and int-sized accesses are often

atomic
u  If you want atomicity, use a lock!

#7: Use Volatile on Modern
Machines

u  Volatile does not cause the compiler to emit
memory fences or barriers
Ø  Consequently: Volatile is useless on out-of-order

processors
u  Volatile does not ensure visibility across a

multiprocessor
Ø  Consequently: Volatile is useless on multicores

u  Solution:
Ø  You must use a good lock implementation
Ø  These contain sufficient barriers make race-free programs

execute in a sequentially consistent manner
u  In a well-synchronized program volatile just slows

it down and hides real problems
u  Best not to hack your own synchronization

primitives

#8: Assume the Compiler is
Right

u  Volatiles are frequently miscompiled
volatile int x;
void foo (void) {
 x = x;
}
$ msp430-gcc -O vol.c -S -o -
foo:
 ret

What does volatile really mean?

u  We have to ask the standard
u  Section 6.7.3 the C99 standard contains most

of the details
Ø  “An object that has volatile-qualified type may be

modified in ways unknown to the implementation or
have other unknown side effects.”

More Standard

u  “What constitutes an access to an object
that has volatile-qualified type is
implementation-defined.”
Ø  What??

u  Apparently this is designed to cover the fact
that some platforms have a minimum
memory access width

Volatile Summary 1

u  Volatile can be good
u  You need it for:

Ø  Accessing device registers
Ø  Communicating with interrupts

u  It’s usually not useful for anything else
u  Be careful about the compiler

Ø  CodeWarrior for ColdFire has volatile bugs
Ø  I’ve reported all of them that I’m aware of…

Volatile Summary 2

u  Locks with compiler and HW barriers give atomicity
and visibility

u  Volatile does not
Ø  No atomicity
Ø  No visibility on advanced HW

u  If you have good locks, use them instead of volatile
for shared data

