
Last Time 

u  Looked at ColdFire and ARM in depth 



Today 
u  Tools and toolchains for embedded 

systems 
Ø  Linkers 
Ø  Programmers 
Ø  Booting an embedded CPU 
Ø  Debuggers 

Ø  JTAG 
u  All of this stuff is “below” the C compiler in 

the stack of tools 
Ø  Material on embedded C will follow 

u  Any weak link in the toolchain will hinder 
development  



Economic Context 

u  Dev. tools for general-purpose systems: 
Ø  Mass-market users: Lots of them, so compiler 

gets tested thoroughly 
Ø  ISVs: Sell popular programs, so executables are 

widely tested 
u  Dev. tools for embedded systems: 

Ø  One of these categories does not exist 
u  Hard to make money selling embedded 

toolchains 
Ø  A few, large sales 
Ø  In many cases, tools are thrown in with the 

architecture license 



Economic Context 

u  Open source tools have changed things 
quite a bit 
Ø  GCC, mainly, but other tools too 
Ø  GCC targets ~40 architectures 

u  Often, a company pays to have GCC ported 
to some embedded architecture 
Ø  Eventually results are open sourced 
Ø  ARM has ~8 people working full-time on GCC 
Ø  Why would they do this? Keep in mind they also 

sell compiler tools 



More Economic Context 

u  Problem: Embedded tools often not very 
high quality 
Ø  Small number of expert users 
Ø  Lots and lots of chips to support 
Ø  This fact is independent of whether the tools are 

open-source or not 

u  Read the Wolfe article linked to the course 
web page 
Ø  Great article 



Compiler 

m.c 

m.o 

Compiler 

a.c 

a.o 

Linker 

In-system programmer 

libwhatever.a 

system.hex 

Debugger 



Linking Background 
u  Each .c file, plus any headers it includes, is 

called a “compilation unit” 
Ø  Compiler turns compilation unit into an object file 

u  Each object (.o) file contains: 
Ø  text segment – executable code 
Ø  data segment – initialized data 
Ø  BSS segment – uninitialized data 
Ø  Other stuff – debugging symbols, etc. 

u  Object files: 
Ø  Relocatable 

Ø  Code and data addresses are symbolic – not 
yet bound to physical addresses 

Ø  Contain unresolved references 



Linking 
u  Linker functions 

1.  Merge text, data, BSS segments of individual 
object files 
Ø  Including libraries 
Ø  Including processor boot code 

2.  Resolve references to code and data 
Ø  Report any errors 

3.  Locate relocatable code 
Ø  Follow instructions in linker script 
Ø  Report any errors 

u  Result: Binary image ready to be loaded 
onto the target system 



Linker Operation 

u  Classify all program symbols as either: 
Ø  Weak – uninitialized globals 
Ø  Strong – functions and initialized globals 

u  Scan object files in order supplied to the 
linker, applying linker rules 
Ø  Bizarre consequence: Same object file might 

have to appear on command line multiple times 

int foo=5; 
 
p1() { 
} 

int foo; 
 
p2() { 
} 

p1.c p2.c 

strong"

weak"

strong"

strong"



Linker Operation 

1.  A strong symbol can only appear once 
Ø  otherwise error 

2.  A weak symbol is overridden by a strong 
symbol of the same name 
Ø  I.e. all references to that name resolve to the 

strong symbol 
3.  If there are multiple weak symbols, the 

linker can pick an arbitrary one 
Ø  uh oh 

u  Lots more details in CS 4400 



Linker Scripts 

u  GNU linker is flexible and powerful 
Ø  Needs a “program” to tell it how to link for a given 

embedded platform 
u  Linker script functionality: 

Ø  Put parts of executable into the right parts of 
memory 

Ø  Insert padding to meet alignment requirements 
Ø  Define extra symbols 
Ø  Do arithmetic 
Ø  Keep track of current position in memory as “.” 



RPi bare metal linker script 

SECTIONS { 
 .init 0x0000 : { 
  *(.init) 
 } 
 .text 0x8000 : { 
  *(.text) 
 } 
 .data : { 
  *(.data) 
 } 
 /DISCARD/ : { 
  *(*) 
 } 

} 



MCF52233 Linker Script 

MEMORY { 
   code (RX)  : ORIGIN = 0x00000500,  
      LENGTH = 0x0003FB00 
   userram (RWX) : ORIGIN = 0x20000400,  
      LENGTH = 0x00007C00 
}       
 
SECTIONS { 

 ___heap_size   = 0x1000; 
 ___stack_size     = 0x1000; 

} 



More Linker Script 
RAMBAR         = 0x20000000; 
RAMBAR_SIZE    = 0x00008000; 
 
FLASHBAR       = 0x00000000; 
FLASHBAR_SIZE  = 0x00040000; 
 
.vectors : 
{ 

 mcf5xxx_vectors.s (.text)  
 . = ALIGN (0x4);  

} >> vectorrom 
 
.text : 
{ 

 *(.text) 
 . = ALIGN (0x4); 
 *(.rodata) 
 . = ALIGN (0x4);    
 ___ROM_AT = .; 
 ___DATA_ROM = .; 

} >> code   



More Linker Script 

.data :  
{   

 ___DATA_RAM = .; 
 . = ALIGN(0x4); 
     
 ___sinit__ = .; 

    STATICINIT 
 __START_DATA = .; 

 
 *(.data) 
 . = ALIGN (0x4); 
 __END_DATA = .; 

 
} >> userram   



More Linker Script 

.bss :   
{ 

 __START_BSS = .; 
 *(.bss) 
 . = ALIGN (0x4); 
 *(COMMON) 
 __END_BSS = .; 
 ___BSS_END = .; 

 
 . = ALIGN(0x4); 

} >> userram   



Loading Programs 

u  Goal: Set things up so CPU runs the desired 
program when powered up 

u  How is this done? 
Ø  Make a ROM, plug it in 
Ø  Burn a PROM / EPROM / EEPROM, plug it in 
Ø  Download into RAM or flash ROM using an ISP 

Ø  “In system programmer” 
Ø  Load new code over a network 

u  Pros and cons of each? 



Booting a CPU 

u  Execute a sequence of steps 
Ø  May run in different orders in different systems 
Ø  Some steps optional 

u  Usually want to cope with both hard and 
soft boot 



Bootup Steps 
1.  Disable all interrupts 

u  Most processors power up with interrupts off 
u  However – may be a soft reboot 

2.  Perform RAM and ROM checks 
u  RAM – “walking 1s” test or similar 
u  ROM – checksum 
u  No point proceeding if one of these fails 

3.  Initialize devices to known states 
4.  Copy initialized data segment from ROM to 

RAM 
5.  Clear BSS – uninitialized data segment 



More Booting 

6.  Initialize the stack 
u  Initialize the stack pointer 
u  Create initial stack frame 

7.  Initialize the heap 
8.  Execute constructors and initializers for all 

global variables 
9.  Enable interrupts 
10.  Call main() 
11.  Deal with the fact that main exited 



Debugging 
u  Important capabilities: 

Ø  Observability – See internal processor state 
Ø  Real-time analysis – Follow execution without 

slowing it down or stopping it 
Ø  Run control – Start and stop the processor, set 

breakpoints, watches, etc. 

u  For each debugging method: 
Ø  Which capabilities does it provide? 
Ø  What are its other pros and cons? 



Debugging Methods 

u  LEDs under software control 
Ø  Minimal workable debugging environment 
Ø  A most unpleasant way to debug complex 

software 

u  printf() to serial console or LCD 
Ø  Severely perturbs timing, typically 
Ø  Generally, a debug printf() is synchronous 

Ø  Means: Hangs the system until the printf 
completes 

Ø  Why? 



More Debugging 
u  Logic analyzer hooked to external pins 

Ø  Timing mode – displays logic transitions on pins 
Ø  State mode – decode executing instructions, bus 

transactions, etc. 
Ø  Triggers – give the analyzer conditions on which 

to start a detailed trace 
Ø  Triggers can be highly elaborate 

u  Remote debugger 
Ø  Debugging stub runs on embedded processor 
Ø  Main debugger (e.g., GDB) runs on a separate 

machine 
Ø  The two communicate using Ethernet, serial line, 

or whatever 



More Debugging 

u  JTAG, BDM, Nexus 
Ø  Basically just hardware implementations of 

debugging stubs 

u  ICE – in-circuit emulator 
Ø  Acts like your embedded processor but provides 

lots of extra functionality 
Ø  Runs at full speed 
Ø  Typically expensive 



More Debugging 

u  ROM emulator 
Ø  Looks like ROM, actually RAM + processor 
Ø  At minimum supports rapid loading of new SW 
Ø  Can implement breakpoints, execution tracing 

u  Simulator 
Ø  Maximum controllability and observability 
Ø  Often slow 
Ø  Hard to interface to the real world 
Ø  Easy to simulate the CPU, hard to simulate 

everything else 



JTAG – IEEE1149.1 

u  Initially for hardware testing, evolved to 
support software testing 

u  Basic idea: 
Ø  Each I/O pin, register, etc. can be “sniffed” by a 

JTAG cell 
Ø  JTAG cells are connected in a “JTAG loop” 
Ø  Contents of entire JTAG loop can be read using a 

shift register 
Ø  Can also be written 

Ø  External tool can reconstruct machine state from 
the JTAG bit stream 



JTAG Hardware Debugging 
Each JTAG cell “sniffs” the state of the corresponding output bit of the IC 

JTAG bit stream in 

JTAG bit stream out 

Bit stream forms one long shift-register 

PC Board 

JTAG Connector 



JTAG Software Debugging 
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More JTAG 

u  Advantages of shift-register approach: 
Ø  Simple 
Ø  Requires few pins 

u  Disadvantage of shift-register approach: 
Ø  End up reading and writing a lot of data just to 

change one register 
u  JTAG optimizations: 

Ø  Commands – Directly change a single register or 
memory cell 

Ø  Addressable loops – smaller JTAG loops each 
containing a subset of the machine state 



More JTAG 
u  Pins: 

Ø  TCK – clock 
Ø  TDI – input data stream, sampled on rising edge 

of TCK 
Ø  TDO – output data stream, updated on falling 

edge of TCK 
Ø  TRST – Resets JTAG state machine (optional) 
Ø  TMS – Test mode select: advances JTAG state 

machine 
u  JTAG interface modules tend to be 

expensive 
Ø  “Low cost” solutions may be $2000 
Ø  However, all-software solutions (on the host side) 

exist 
Ø  MCF52233 has JTAG 



Summary 
u  Embedded system development is strongly 

dependent on good tools 
Ø  There is huge variation in tool quality 
Ø  Lots of times free tools can be found 

Ø  Sometimes they suck 
Ø  Non-free tools can be really expensive 

Ø  E.g., more than $10K per developer seat 
Ø  These can suck too 

u  You need to understand what the tools do, 
what the tradeoffs are, etc. 

u  Generally it’s far better to buy the right 
tools up front 
Ø  Saving $$ not worth if it makes the product ship 

late 


