
Last Time

u  Looked at ColdFire and ARM in depth

Today
u  Tools and toolchains for embedded

systems
Ø  Linkers
Ø  Programmers
Ø  Booting an embedded CPU
Ø  Debuggers

Ø  JTAG
u  All of this stuff is “below” the C compiler in

the stack of tools
Ø  Material on embedded C will follow

u  Any weak link in the toolchain will hinder
development

Economic Context

u  Dev. tools for general-purpose systems:
Ø  Mass-market users: Lots of them, so compiler

gets tested thoroughly
Ø  ISVs: Sell popular programs, so executables are

widely tested
u  Dev. tools for embedded systems:

Ø  One of these categories does not exist
u  Hard to make money selling embedded

toolchains
Ø  A few, large sales
Ø  In many cases, tools are thrown in with the

architecture license

Economic Context

u  Open source tools have changed things
quite a bit
Ø  GCC, mainly, but other tools too
Ø  GCC targets ~40 architectures

u  Often, a company pays to have GCC ported
to some embedded architecture
Ø  Eventually results are open sourced
Ø  ARM has ~8 people working full-time on GCC
Ø  Why would they do this? Keep in mind they also

sell compiler tools

More Economic Context

u  Problem: Embedded tools often not very
high quality
Ø  Small number of expert users
Ø  Lots and lots of chips to support
Ø  This fact is independent of whether the tools are

open-source or not

u  Read the Wolfe article linked to the course
web page
Ø  Great article

Compiler

m.c

m.o

Compiler

a.c

a.o

Linker

In-system programmer

libwhatever.a

system.hex

Debugger

Linking Background
u  Each .c file, plus any headers it includes, is

called a “compilation unit”
Ø  Compiler turns compilation unit into an object file

u  Each object (.o) file contains:
Ø  text segment – executable code
Ø  data segment – initialized data
Ø  BSS segment – uninitialized data
Ø  Other stuff – debugging symbols, etc.

u  Object files:
Ø  Relocatable

Ø  Code and data addresses are symbolic – not
yet bound to physical addresses

Ø  Contain unresolved references

Linking
u  Linker functions

1.  Merge text, data, BSS segments of individual
object files
Ø  Including libraries
Ø  Including processor boot code

2.  Resolve references to code and data
Ø  Report any errors

3.  Locate relocatable code
Ø  Follow instructions in linker script
Ø  Report any errors

u  Result: Binary image ready to be loaded
onto the target system

Linker Operation

u  Classify all program symbols as either:
Ø  Weak – uninitialized globals
Ø  Strong – functions and initialized globals

u  Scan object files in order supplied to the
linker, applying linker rules
Ø  Bizarre consequence: Same object file might

have to appear on command line multiple times

int foo=5;

p1() {
}

int foo;

p2() {
}

p1.c p2.c

strong"

weak"

strong"

strong"

Linker Operation

1.  A strong symbol can only appear once
Ø  otherwise error

2.  A weak symbol is overridden by a strong
symbol of the same name
Ø  I.e. all references to that name resolve to the

strong symbol
3.  If there are multiple weak symbols, the

linker can pick an arbitrary one
Ø  uh oh

u  Lots more details in CS 4400

Linker Scripts

u  GNU linker is flexible and powerful
Ø  Needs a “program” to tell it how to link for a given

embedded platform
u  Linker script functionality:

Ø  Put parts of executable into the right parts of
memory

Ø  Insert padding to meet alignment requirements
Ø  Define extra symbols
Ø  Do arithmetic
Ø  Keep track of current position in memory as “.”

RPi bare metal linker script

SECTIONS {
 .init 0x0000 : {
 *(.init)
 }
 .text 0x8000 : {
 *(.text)
 }
 .data : {
 *(.data)
 }
 /DISCARD/ : {
 ()
 }

}

MCF52233 Linker Script

MEMORY {
 code (RX) : ORIGIN = 0x00000500,
 LENGTH = 0x0003FB00
 userram (RWX) : ORIGIN = 0x20000400,
 LENGTH = 0x00007C00
}

SECTIONS {

 ___heap_size = 0x1000;
 ___stack_size = 0x1000;

}

More Linker Script
RAMBAR = 0x20000000;
RAMBAR_SIZE = 0x00008000;

FLASHBAR = 0x00000000;
FLASHBAR_SIZE = 0x00040000;

.vectors :
{

 mcf5xxx_vectors.s (.text)
 . = ALIGN (0x4);

} >> vectorrom

.text :
{

 *(.text)
 . = ALIGN (0x4);
 *(.rodata)
 . = ALIGN (0x4);
 ___ROM_AT = .;
 ___DATA_ROM = .;

} >> code

More Linker Script

.data :
{

 ___DATA_RAM = .;
 . = ALIGN(0x4);

 ___sinit__ = .;

 STATICINIT
 __START_DATA = .;

 *(.data)
 . = ALIGN (0x4);
 __END_DATA = .;

} >> userram

More Linker Script

.bss :
{

 __START_BSS = .;
 *(.bss)
 . = ALIGN (0x4);
 *(COMMON)
 __END_BSS = .;
 ___BSS_END = .;

 . = ALIGN(0x4);

} >> userram

Loading Programs

u  Goal: Set things up so CPU runs the desired
program when powered up

u  How is this done?
Ø  Make a ROM, plug it in
Ø  Burn a PROM / EPROM / EEPROM, plug it in
Ø  Download into RAM or flash ROM using an ISP

Ø  “In system programmer”
Ø  Load new code over a network

u  Pros and cons of each?

Booting a CPU

u  Execute a sequence of steps
Ø  May run in different orders in different systems
Ø  Some steps optional

u  Usually want to cope with both hard and
soft boot

Bootup Steps
1.  Disable all interrupts

u  Most processors power up with interrupts off
u  However – may be a soft reboot

2.  Perform RAM and ROM checks
u  RAM – “walking 1s” test or similar
u  ROM – checksum
u  No point proceeding if one of these fails

3.  Initialize devices to known states
4.  Copy initialized data segment from ROM to

RAM
5.  Clear BSS – uninitialized data segment

More Booting

6.  Initialize the stack
u  Initialize the stack pointer
u  Create initial stack frame

7.  Initialize the heap
8.  Execute constructors and initializers for all

global variables
9.  Enable interrupts
10.  Call main()
11.  Deal with the fact that main exited

Debugging
u  Important capabilities:

Ø  Observability – See internal processor state
Ø  Real-time analysis – Follow execution without

slowing it down or stopping it
Ø  Run control – Start and stop the processor, set

breakpoints, watches, etc.

u  For each debugging method:
Ø  Which capabilities does it provide?
Ø  What are its other pros and cons?

Debugging Methods

u  LEDs under software control
Ø  Minimal workable debugging environment
Ø  A most unpleasant way to debug complex

software

u  printf() to serial console or LCD
Ø  Severely perturbs timing, typically
Ø  Generally, a debug printf() is synchronous

Ø  Means: Hangs the system until the printf
completes

Ø  Why?

More Debugging
u  Logic analyzer hooked to external pins

Ø  Timing mode – displays logic transitions on pins
Ø  State mode – decode executing instructions, bus

transactions, etc.
Ø  Triggers – give the analyzer conditions on which

to start a detailed trace
Ø  Triggers can be highly elaborate

u  Remote debugger
Ø  Debugging stub runs on embedded processor
Ø  Main debugger (e.g., GDB) runs on a separate

machine
Ø  The two communicate using Ethernet, serial line,

or whatever

More Debugging

u  JTAG, BDM, Nexus
Ø  Basically just hardware implementations of

debugging stubs

u  ICE – in-circuit emulator
Ø  Acts like your embedded processor but provides

lots of extra functionality
Ø  Runs at full speed
Ø  Typically expensive

More Debugging

u  ROM emulator
Ø  Looks like ROM, actually RAM + processor
Ø  At minimum supports rapid loading of new SW
Ø  Can implement breakpoints, execution tracing

u  Simulator
Ø  Maximum controllability and observability
Ø  Often slow
Ø  Hard to interface to the real world
Ø  Easy to simulate the CPU, hard to simulate

everything else

JTAG – IEEE1149.1

u  Initially for hardware testing, evolved to
support software testing

u  Basic idea:
Ø  Each I/O pin, register, etc. can be “sniffed” by a

JTAG cell
Ø  JTAG cells are connected in a “JTAG loop”
Ø  Contents of entire JTAG loop can be read using a

shift register
Ø  Can also be written

Ø  External tool can reconstruct machine state from
the JTAG bit stream

JTAG Hardware Debugging
Each JTAG cell “sniffs” the state of the corresponding output bit of the IC

JTAG bit stream in

JTAG bit stream out

Bit stream forms one long shift-register

PC Board

JTAG Connector

JTAG Software Debugging

Processor Core

Program Counter - PC

Register R1

Register R2

Register Rn

A
dd

r B
us

 In
te

rf
ac

e

Data Bus Interface

Status Bus Interface

JTAG Control
State Machine

JTAG in
Clock in

JTAG out

“SPECIAL” REGISTER SET

More JTAG

u  Advantages of shift-register approach:
Ø  Simple
Ø  Requires few pins

u  Disadvantage of shift-register approach:
Ø  End up reading and writing a lot of data just to

change one register
u  JTAG optimizations:

Ø  Commands – Directly change a single register or
memory cell

Ø  Addressable loops – smaller JTAG loops each
containing a subset of the machine state

More JTAG
u  Pins:

Ø  TCK – clock
Ø  TDI – input data stream, sampled on rising edge

of TCK
Ø  TDO – output data stream, updated on falling

edge of TCK
Ø  TRST – Resets JTAG state machine (optional)
Ø  TMS – Test mode select: advances JTAG state

machine
u  JTAG interface modules tend to be

expensive
Ø  “Low cost” solutions may be $2000
Ø  However, all-software solutions (on the host side)

exist
Ø  MCF52233 has JTAG

Summary
u  Embedded system development is strongly

dependent on good tools
Ø  There is huge variation in tool quality
Ø  Lots of times free tools can be found

Ø  Sometimes they suck
Ø  Non-free tools can be really expensive

Ø  E.g., more than $10K per developer seat
Ø  These can suck too

u  You need to understand what the tools do,
what the tradeoffs are, etc.

u  Generally it’s far better to buy the right
tools up front
Ø  Saving $$ not worth if it makes the product ship

late

