Lab Assignment

Each team will independently implement the
launch interceptor specification

For this assignment, you’re writing portable
C code

We’ll worry about I/O later

Lab Assignment

¢ You are allowed to reuse code from the
Internet

> But you must cite the source for anything that is
cut-and-pasted or retyped

¢ Correctness:

» You get points for creating test cases that other
teams cannot handle correctly

> Including mine!

> You lose points for not being able to handle test
cases generated by other teams

Lab Assignment

¢ Each team should come up with a division
of work for the Launch Interceptor

> ~1 page of PDF, due in 1 week
> Who will do what?
> What are the interfaces between people?

> Be specific! | want to see prototypes for C
functions

Who is the test czar?
What is the test plan?
Again be specific
Where will test cases come from?
How will you know the answers are right?
Unit testing vs. system testing?
What does the test harness look like?

Lab Assignment

¢ You’ll be using git, hosted on github
» Has a bit of a learning curve!
> I'll send out instructions and links to docs

Mars Curiosity Rover

Duplicated computers, one is backup
Each has a RAD750 CPU

> PPC architecture
» Up to 200 MHz

256 MB of DRAM, 2 GB of flash memory
Runs VxWorks: a real-time OS
Software written in C

Today

¢ Requirements

¢ Design
> Architectures
> Processors
> Languages

Embedded System
Requirements

¢ Two basic flavors
»> Functional — What the system does
> We just talked about this

» Non-functional (or para-functional) — Important
properties not directly related to what the system
does

Example Non-Functional

4
4
4
¢
4
4
¢

4

Requirements

Energy-efficient

Real-time

Safety critical

Upgradeable

Cost sensitive

Highly available or fault-tolerant
Secure

These issues cut across system designs
> Important (and difficult) to get them right
> We'll be spending a lot of time on these

Crosscutting Issues

¢ Energy efficiency

»> Must run for years on a tiny battery (hearing aid,
pacemaker)

> Unlimited power (ventilation control)

¢ Real-time

> Great harm is done if deadlines are missed (process
control, avionics, weapons)

> Few time constraints (toy)

More Crosscutting Issues

¢ Safety critical
> Device is safety critical (nuclear plant)
» Failure is largely irrelevant (toy, electric toothbrush)

¢ Upgradability
> Impossible to update (spacecraft, pacemaker)
> Easily updated (firmware in a PC network card)

More Crosscutting Issues

¢ Cost sensitivity

> A few % in extra costs will kill profitability
(many products)

» Cost is largely irrelevant (military applications)

¢ Availability / fault-tolerance

> Must be operating all the time (pacemaker,
spacecraft control)

» Can shutdown at any time (cell phone)

More Crosscutting Issues

¢ Secure

» Security breach extremely bad (smart card,
satellite, missile launch control)

> Security irrelevant (many systems)

¢ Distributed
» Single-node (many systems)
» Fixed topology (car)

» Variable topology (sensor network, bluetooth
network)

Software Architectures

Important high-level decision when building
an embedded system:

> What does the “main loop” look like?

How is control flow determined?

> What computations can preempt others, and
when?

How is data flow determined?
Options:

» Cyclic executive
> Event-driven

> Threaded
>
>

Dataflow
Client-server

Cyclic Executive

main() {
init();
while (1) {
a(); Advantages?
b(); Disadvantages?

c();
d();
1

Historically, most embedded systems
are based on cyclic executives

Cyclic Exec. Variations

main() {
init();
while (1) {
a();

main() {
init();
while (1) {
wait_on_clock(); b();
a(); a();,
b(); c();

c();]
0 a();

Interrupt Driven

main() {
while (1) {}

}

interrupt_handler() {

}
(0]

main() {
while (1) {
sleep();
}
}

Advantages?
Disadvantages?

Event Driven

main() {
while (1) {
event te =
get_event();
if (e) {
(e)();
} else {
sleep_cpu();

1

interrupt_handler() {
time_critical_stuff();
enqueue_event
(non_time_critical);

}

Advantages?
Disadvantages?

Threaded (using an RTOS)

¢ Threads are usually sleeping on events

¢ Highest priority thread runs except when:
> It’ s blocked
> An interrupt is running

> It wakes up and another thread is executing in
the kernel

Advantages?
Disadvantages?

Pipeline-Driven (Dataflow)
Network

Radar
Fier

Correlator

Output_

Client-Server

Network
input

Correlator

Architecture Summary

All of the architectures have significant
advantages and disadvantages

> Resource usage
> Responsiveness
> Safety
>
>

Fault tolerance
Maintainability

Once an architecture is chosen, lots of
other design decisions follow

Very important to choose an appropriate
architecture for a new system

Architectures can be combined
> But this is hard to get right

Choosing a CPU

¢ Issues:

» Cost
Size
Pinout
Devices
Performance
Match to system workload
Memory protection
Address space size
Word size
User / kernel support
Floating point

>
>
>
>
>
>
>
>
>
>

CPU Options

¢ Create custom hardware
» May not need any CPU at all!

¢ 4-bit microcontroller
Few nibbles of RAM
No OS
Software all in assembly
E.g. COP400, EM73201, W741E260, HD404358
Dying out?

More CPU Options

¢ 8-bit microcontroller
> A few bytes to a few hundred KB of RAM

> At the small end software is in asm, at the high end
C, C++, Java

Might run a home-grown OS, might run a commercial
RTOS

Still dominate both numbers and dollar volume
Two kinds:
» Old style
» CISC, designed for hand-written code
» E.g. 68HC11, 6502, Z80, 8051
> These are >20 years old and doing well
> New style
> RISC, designed as a compiler target
> E.g. AVR, PIC

More CPU Options

¢ 16- and 32-bit microcontrollers

Few KB to many MB of RAM

Usually runs an RTOS

May or may not have caches

Wide range of costs

16-bit: MSP430, 68HC16, H8

32-bit: ARM, MIPS, MN10300, x86, PPC, ColdFire
Labs in this class will use ARM

Is 16-bit dying?

» Has serious disadvantages compared to 32-
bit but few advantages

New ARM “Cortex” processors designed to kill
the 8-bit and 16-bit markets

>
>
>
>
>
>
>
>

More CPU Options

¢ 32- or 64-bit microprocessor
> Basically a PC in a small package
> Runs Win XP, Linux, or whatever
> Relatively expensive in power and $$

¢ Many specialized processors exist
> E.g. DSP — optimized for signal processing

Choosing a Language

¢ Issues:

» Footprint
> RAM, ROM
Efficiency
Debuggability
Predictability
Portability
Toolchain quality
Libraries
Level of abstraction
Developer availability
> Anyone know Jovial? PL/1? Forth? BCPL?

>
>
>
>
>
>
>
>

Programming Languages

¢ Assembler

No space overhead

Good programmers write fast code
Non-portable

Very hard to debug

>
>
>
>

¢ C

> Little space and time overhead
» Somewhat portable
> Good compilers exist

More Languages

¢ C++
> Often used as a “better C”
> Low space and time overhead if used carefully
> Unbelievably complex, especially C++11

¢ Java
> More portable
» Full Java requires lots of RAM
> J2ME popular on cell-phone types of devices
» Bad for real-time!

Choosing an OS

¢ Issues very similar to languages
» Footprint
> RAM, ROM
» Efficiency
> Debuggability
>
>

Predictability
Portability

¢ Otherissues

Process / thread model
Device support
Scheduling model

>
>
>
> Price and licensing model

Real-Time OS

Low end: Not much more than a threads
library

High end: Stripped-down version of Linux
or WinXP
Many, many RTOSs exist

> They are quite easy to create

Interesting RTOSs:
> QNX

» uClinux

> uC/OS-Il

> VXxWorks

Summary

Embedded systems are highly diverse

External requirements dictate
» Choice of CPU, language, OS
» Choice of software architecture
» This is worth thinking about very carefully

Very different experience developing
embedded apps relative to desktop apps

Embedded systems are:
» Fun — They make stuff happen in the real world

> Important — Your life depended on hundreds of
them on the way to school today

» Ubiquitous — More processors sold per year than
people on earth

Assignment for Tuesday

4

Find an embedded device that you can take
apart such as an old...

» Cell phone, home router or hub, MP3 player, printer,

Should be a device you don’ t care about
> If you can’t find one, talk to me

Open the device so you can see the main circuit
board(s)

Identify as many parts as possible — search for
part numbers on the web

Estimate cost to produce the device
> Part cost + assembly cost
» Compare to purchase cost
Talk about the device in class on Tues

> ﬁ'll_so hand in a short writeup — I’'ll send mail about
is

