
Lab Assignment

u  Each team will independently implement the
launch interceptor specification

u  For this assignment, you’re writing portable
C code

u  We’ll worry about I/O later

Lab Assignment

u  You are allowed to reuse code from the
Internet
Ø  But you must cite the source for anything that is

cut-and-pasted or retyped

u  Correctness:
Ø  You get points for creating test cases that other

teams cannot handle correctly
Ø  Including mine!

Ø  You lose points for not being able to handle test
cases generated by other teams

Lab Assignment
u  Each team should come up with a division

of work for the Launch Interceptor
Ø  ~1 page of PDF, due in 1 week
Ø  Who will do what?
Ø  What are the interfaces between people?

Ø  Be specific! I want to see prototypes for C
functions

Ø  Who is the test czar?
Ø  What is the test plan?

Ø  Again be specific
Ø  Where will test cases come from?
Ø  How will you know the answers are right?
Ø  Unit testing vs. system testing?
Ø  What does the test harness look like?

Lab Assignment

u  You’ll be using git, hosted on github
Ø  Has a bit of a learning curve!
Ø  I’ll send out instructions and links to docs

Mars Curiosity Rover

u  Duplicated computers, one is backup
u  Each has a RAD750 CPU

Ø  PPC architecture
Ø  Up to 200 MHz

u  256 MB of DRAM, 2 GB of flash memory
u  Runs VxWorks: a real-time OS
u  Software written in C

Today

u  Requirements
u  Design

Ø  Architectures
Ø  Processors
Ø  Languages

Embedded System
Requirements

u  Two basic flavors
Ø  Functional – What the system does

Ø  We just talked about this
Ø  Non-functional (or para-functional) – Important

properties not directly related to what the system
does

Example Non-Functional
Requirements

u  Energy-efficient
u  Real-time
u  Safety critical
u  Upgradeable
u  Cost sensitive
u  Highly available or fault-tolerant
u  Secure

u  These issues cut across system designs
Ø  Important (and difficult) to get them right
Ø  We’ll be spending a lot of time on these

Crosscutting Issues

u  Energy efficiency
Ø  Must run for years on a tiny battery (hearing aid,

pacemaker)
Ø  Unlimited power (ventilation control)

u  Real-time
Ø  Great harm is done if deadlines are missed (process

control, avionics, weapons)
Ø  Few time constraints (toy)

More Crosscutting Issues
u  Safety critical

Ø  Device is safety critical (nuclear plant)
Ø  Failure is largely irrelevant (toy, electric toothbrush)

u  Upgradability
Ø  Impossible to update (spacecraft, pacemaker)
Ø  Easily updated (firmware in a PC network card)

More Crosscutting Issues

u  Cost sensitivity
Ø  A few % in extra costs will kill profitability

(many products)
Ø  Cost is largely irrelevant (military applications)

u  Availability / fault-tolerance
Ø  Must be operating all the time (pacemaker,

spacecraft control)
Ø  Can shutdown at any time (cell phone)

More Crosscutting Issues

u  Secure
Ø  Security breach extremely bad (smart card,

satellite, missile launch control)
Ø  Security irrelevant (many systems)

u  Distributed
Ø  Single-node (many systems)
Ø  Fixed topology (car)
Ø  Variable topology (sensor network, bluetooth

network)

Software Architectures
u  Important high-level decision when building

an embedded system:
Ø  What does the “main loop” look like?

u  How is control flow determined?
Ø  What computations can preempt others, and

when?
u  How is data flow determined?
u  Options:

Ø  Cyclic executive
Ø  Event-driven
Ø  Threaded
Ø  Dataflow
Ø  Client-server

Cyclic Executive

main() {
 init();
 while (1) {
 a();
 b();
 c();
 d();
}}

Advantages?
Disadvantages?

Historically, most embedded systems
are based on cyclic executives

Cyclic Exec. Variations
main() {
 init();
 while (1) {
 wait_on_clock();
 a();
 b();
 c();
}}

main() {
 init();
 while (1) {
 a();
 b();
 a();
 c();
 a();
}}

Interrupt Driven
main() {
 while (1) { }
}

Or…

main() {
 while (1) {
 sleep();
 }
}

interrupt_handler() {
 …
}

Advantages?
Disadvantages?

Event Driven
main() {
 while (1) {
 event_t e =
 get_event();
 if (e) {
 (e)();
 } else {
 sleep_cpu();
}}}

interrupt_handler() {
 time_critical_stuff();
 enqueue_event
 (non_time_critical);
}

Advantages?
Disadvantages?

Threaded (using an RTOS)
u  Threads are usually sleeping on events
u  Highest priority thread runs except when:

Ø  It’s blocked
Ø  An interrupt is running
Ø  It wakes up and another thread is executing in

the kernel

Advantages?
Disadvantages?

Pipeline-Driven (Dataflow)
Network
input Output

Filter
Correlator

Output

Radar
input

Clock

Clock

Client-Server
Network
input Output

Filter
Correlator

Output

Radar
input

Clock

Clock

Architecture Summary
u  All of the architectures have significant

advantages and disadvantages
Ø  Resource usage
Ø  Responsiveness
Ø  Safety
Ø  Fault tolerance
Ø  Maintainability

u  Once an architecture is chosen, lots of
other design decisions follow

u  Very important to choose an appropriate
architecture for a new system

u  Architectures can be combined
Ø  But this is hard to get right

Choosing a CPU

u  Issues:
Ø  Cost
Ø  Size
Ø  Pinout
Ø  Devices
Ø  Performance
Ø  Match to system workload
Ø  Memory protection
Ø  Address space size
Ø  Word size
Ø  User / kernel support
Ø  Floating point

CPU Options

u  Create custom hardware
Ø  May not need any CPU at all!

u  4-bit microcontroller
Ø  Few nibbles of RAM
Ø  No OS
Ø  Software all in assembly
Ø  E.g. COP400, EM73201, W741E260, HD404358
Ø  Dying out?

More CPU Options
u  8-bit microcontroller

Ø  A few bytes to a few hundred KB of RAM
Ø  At the small end software is in asm, at the high end

C, C++, Java
Ø  Might run a home-grown OS, might run a commercial

RTOS
Ø  Still dominate both numbers and dollar volume
Ø  Two kinds:

Ø  Old style
Ø  CISC, designed for hand-written code
Ø  E.g. 68HC11, 6502, Z80, 8051
Ø  These are >20 years old and doing well

Ø  New style
Ø  RISC, designed as a compiler target
Ø  E.g. AVR, PIC

More CPU Options
u  16- and 32-bit microcontrollers

Ø  Few KB to many MB of RAM
Ø  Usually runs an RTOS
Ø  May or may not have caches
Ø  Wide range of costs
Ø  16-bit: MSP430, 68HC16, H8
Ø  32-bit: ARM, MIPS, MN10300, x86, PPC, ColdFire
Ø  Labs in this class will use ARM
Ø  Is 16-bit dying?

Ø  Has serious disadvantages compared to 32-
bit but few advantages

Ø  New ARM “Cortex” processors designed to kill
the 8-bit and 16-bit markets

More CPU Options

u  32- or 64-bit microprocessor
Ø  Basically a PC in a small package
Ø  Runs Win XP, Linux, or whatever
Ø  Relatively expensive in power and $$

u  Many specialized processors exist
Ø  E.g. DSP – optimized for signal processing

Choosing a Language
u  Issues:

Ø  Footprint
Ø  RAM, ROM

Ø  Efficiency
Ø  Debuggability
Ø  Predictability
Ø  Portability
Ø  Toolchain quality
Ø  Libraries
Ø  Level of abstraction
Ø  Developer availability

Ø  Anyone know Jovial? PL/1? Forth? BCPL?

Programming Languages
u  Assembler

Ø  No space overhead
Ø  Good programmers write fast code
Ø  Non-portable
Ø  Very hard to debug

u  C
Ø  Little space and time overhead
Ø  Somewhat portable
Ø  Good compilers exist

More Languages
u  C++

Ø  Often used as a “better C”
Ø  Low space and time overhead if used carefully
Ø  Unbelievably complex, especially C++11

u  Java
Ø  More portable
Ø  Full Java requires lots of RAM
Ø  J2ME popular on cell-phone types of devices
Ø  Bad for real-time!

Choosing an OS
u  Issues very similar to languages

Ø  Footprint
Ø  RAM, ROM

Ø  Efficiency
Ø  Debuggability
Ø  Predictability
Ø  Portability

u  Other issues
Ø  Process / thread model
Ø  Device support
Ø  Scheduling model
Ø  Price and licensing model

Real-Time OS

u  Low end: Not much more than a threads
library

u  High end: Stripped-down version of Linux
or WinXP

u  Many, many RTOSs exist
Ø  They are quite easy to create

u  Interesting RTOSs:
Ø  QNX
Ø  uClinux
Ø  uC/OS-II
Ø  VxWorks

Summary
u  Embedded systems are highly diverse
u  External requirements dictate

Ø  Choice of CPU, language, OS
Ø  Choice of software architecture

Ø  This is worth thinking about very carefully
u  Very different experience developing

embedded apps relative to desktop apps
u  Embedded systems are:

Ø  Fun – They make stuff happen in the real world
Ø  Important – Your life depended on hundreds of

them on the way to school today
Ø  Ubiquitous – More processors sold per year than

people on earth

Assignment for Tuesday
u  Find an embedded device that you can take

apart such as an old…
Ø  Cell phone, home router or hub, MP3 player, printer,
…

u  Should be a device you don’t care about
Ø  If you can’t find one, talk to me

u  Open the device so you can see the main circuit
board(s)

u  Identify as many parts as possible – search for
part numbers on the web

u  Estimate cost to produce the device
Ø  Part cost + assembly cost
Ø  Compare to purchase cost

u  Talk about the device in class on Tues
Ø  Also hand in a short writeup – I’ll send mail about

this

