Can We Make
Compilers That Work?

John Regehr
September 2010

* Undergrad

— Kansas State 1990-1995
— Math and computer science

 Grad school

— University of Virginia 1995-2001
— 1 summer internship at a small company
— 2 summer internships at Microsoft Research

e Postdoctoral researcher
— Utah CS 2001-2003

* On the faculty at Utah CS since 2003

* Reported 277 bugs to teams
developing C compilers

— Most have been fixed

* Found serious wrong-code bugs in
all C compilers we’ve tested

—Including those used to compile safety-
critical embedded systems

—Including 6 bugs in a compiler that was
proved to be correct

 What’s going on here?

—Why can’t anyone create a C compiler that
we can’t break?

* Our goal: Robust open-source
compilation tools

—We keep finding and reporting bugs until
we stop finding them

—Hasn’t happened after 2.5 years...

 What about commercial compilers?

static int x;

static int *volatile z = &x;

static int foo (int *y) {
return *y,

}

int main (void) {
*z = 1;
printf ("%d\n", foo(&x));
return O;

}

* Should print “1”

e GCCrev 164319 at —02 on x86-64 prints “0”

* Do compiler bugs even matter?

—Students in my embedded systems courses
routinely encounter compiler bugs

—Large development efforts routinely
encounter compiler bugs

—C compiler is part of the trusted computing
base for most computer systems

* Symptoms of compiler bugs

1. Failure to emit code

2. Emitted code crashes or computes wrong
result

3. Emitted code violates the volatile invariant

* All tested compilers have bugs with
all three kinds of symptoms

Test case
generator

C prongl\

Compiler 1 | Compiler 2 @ Compiler 3

WItS 1

@ @
«——vote —
majority minority

Test Case Generator

e Grammar for C subset
e Lots of constraints

— Must declare a variable before using it
— Etc.

* Generator is driven by...

—Random search
— Depth first search

Not a Bug #1

int foo (int x)

{

}

return (x+1) > x;

int main (void)

{

}

printf ("%d\n",
foo (INT_MAX));
return O;

S gcc-O1 int.c -o int
S ./int

0

S gcc -02 int.c -o int

S ./int
1

Not a Bug #2

int bar (int x)

{

}

inti;
if (i > 10) x++;
return Xx;

int main (void)

{
}

printf ("%d\n", bar (50));

S clang -00 init.c -0 init
S ./init

51

S clang -O1 init.c -0 init
S ./init

50

Not a Bug #3

#include <stdio.h> S gcc compare.c -o compare
int main (void) { S ./compare
long a =-1; 0
unsigned b = 1; S gcc -m32 compare.c -0 \
printf ("%d\n", a > b); compare
return O; S ./compare

} 1

* Property we require:

— Anytime changing the compiler or
optimization level changes the program’s
result, it’s a compiler bug

* Without this property, automated
testing is impossible

e Generated code must not...

— Execute undefined behavior (191 kinds)

— Rely on unspecified behavior (52 kinds)

Less undefined / unspecified behavior

Lindig 07 Our work
s \ICKeEMaN 98 ey
Less expressive More expressive
Sheridan 07

More undefined / unspecified behavior .

Supported features: Can easily add:

e Arithmetic, logical, and bit » Side-effecting expressions
operations on integers « Comma operator

* Forloops

* Conditionals Probably not anytime soon:
* Function calls * Interesting type casts

* Const and volatile e Strings

* Structs * Unions

* Pointers and arrays * Floating point

* Goto * Nontrivial C++

* Switch * Nonlocal jumps

* Break, continue * Varargs

* Bitfields * Recursive functions

* Function pointers
 Dynamic memory alloc.

Avoiding Undefined and
Unspecified Behavior

e Offline avoidance is too difficult

—E.g. ensuring in-bounds array access

* Online avoidance is too inefficient

—E.g. ensuring validity of pointer to stack

* Solution: Combine static analysis
and dynamic checks

* Order of evaluation of function
arguments is unspecified
* E.8.
foo (bar () ,baz ())

* Where bar() and baz() both modify
some variable

e Solution:

—Interprocedural analysis to compute
conservative read and write set for each
function

—In between sequence points, never invoke
functions where read and write sets
conflict

19

* Undefined in C
— Divide by zero
—Shift by negative, shift past bitwidth
—Signed overflow
—Etc.

20

e Solution: Wrap all potentially
undefined operations

int safe_signed sub (int sil, int si2) {
if (((sil”*si2) & (((sil”*((sil”si2)
& (1 << (sizeof(int)*CHAR BIT-1))))-si2)”*si2))
< 0) {
return O;
} else {

return sil - si2;

21

* Undefined pointer behaviors...
— Using pointer to null
— Using pointer to out-of-scope data
— Creating or using an out of bounds pointer

22

e Solution:

—Some problems can be avoided using
dynamic checks

*if (ptr) { ..}
—Some problems require static analysis

* Dereferencing a global pointer that may
reference variables on the stack

 Casting away type qualifier

23

1 75 = g_20;
for (1. .74 = 4; 1 74 '= 0;
1 74 -= 5)) {
int32 t 1 81 = 0xD4AB686F2L;

g_ 20 func_78 (func_10(g_4,
((g_20 <= 1_85) & (g_20 &&

g 20)), OxA49EL), (p_70 <=
func_52((1_81 <= 1 81), g 20)),
1 75,

((safe lshift func uint64 t u u
(1L._74, 1 76)) '= (1 86 ==
OxF7AF164004COD6AFLL))) ;

}

return g 4;

Results

* Mostly, compilers go wrong at
higher optimization levels

* But sometimes the compiler is
wrong...
—Only when optimizations are turned off
— Consistently at all optimization levels
—Because it was itself miscompiled
—Because a system library function is wrong
—Only very rarely
— About half of the time

Functional Bug 1 — GCC

* Version of GCC that ships with
Ubuntu 8.04 for x86 miscompiles:

int foo (void) {
signed char x =
unsigned char y
return x > y;

1;
= -1;

}

 Correct return valueis 0

Functional Bug 2 — Sun CC

uint32 t x;

int32 t bar (void) {
return OxF58AAEQO7L;

}
void foo (void) {

x = (0x9AE77AB3L || 1) <= bar ();
}

* foo() should assign 0 into x, instead assigns 1
 Wrong code generated at all optimization levels!
e Sun has assigned this bug “Priority 4 — Low”

Functional Bug 3 — LLVM-GCC

int32 t x;
void foo (int32_t y) {

x = 1;

if (y){ for (;;) x =1; }
}

* Emitted code does not store to x

* CompCert is a verified compiler

—Compiles C to PPC and ARM

—Produces a formal proof that the
compilation was correct

e We found

—3 bugs in the frontend
—3 bugs in the backend
—0 bugs in the (verified) middle part

Volatile Variables

* For volatile qualified variables, the
compiler must issue as many loads
as there are reads, and as many
stores as there are writes

31

Volatile Results

* We found systematic
miscompilation of volatiles!

— All compilers have bugs
—Some are very, very wrong

 What’s going on?
—Hard to test
—Volatile conflicts with optimizations

Can We Improve LLVM?

* Over a year we reported 55 bugs to
the LLVM developers

* They fixed these bugs and we
measured the effect on the quality
of this compiler

Crash Errors (%)

100 ¢
I 24%

13.8% 14.6%

01 F 0.0475%

0.01 |
I . 0.00103%
0.001 :
2.0 2.1 2.2 2.3 2.4
LLVM Version
6 crash bugs 19 crash bugs
reported between reported between
2.2and 2.3 2.3 and 2.4

Compiler crashes

34

Volatile Errors (%)

100 ¢

14.8% 14.5% 12.5%

10 |

0.1

0.01 f

0.001
2.2 2.3 2.4

LLVM Version

2.0 2.1

4 volatile bugs 5 volatile bugs
reported between reported between
2.2and 2.3 23and 2.4

Volatile errors

35

Functional Errors (%)

0.254%

~ 0.133% 0.127%
0.1 3

0.01 0.00723%

0%

-

0.001
2.0 2.1 2.2 2.3 2.4

LLVM Version

5 functional bugs 16 functional bugs
reported between reported between
2.2and 2.3 2.3 and 2.4

Functional Errors

36

LLVM Non-Result #1

* Correlation between our bug
reports and compiler quality is
obvious

e Causation very hard to prove

—LLVM team fixed many bugs besides ones
that we reported

LLVM Non-Result #2

e Of course LLVM is not now free of
bugs

* But it is better when...
— Compiling the subset of C that we generate
—Targeting x86
— Using the standard —0[0123s] options

What If You Find a Compiler Bug?

1. Be extremely suspicious

— Most suspected compiler bugs turn out
to be problems in the compiled code

2. Create a small test case

3. Figure out what the answer is
supposed to be

4. Report it!

* Generating bug-inducing test cases
is easy and fast

* Creating actionable bug reports is
difficult and slow

— Creating minimum-sized failure-inducing
compiler inputs is very hard

e Delta debugging is obvious way to
reduce size of failure-inducing tests

— Delta debugging == Repeatedly remove
part of the program and see if it remains
“interesting”

* Works well for compiler crashes

* Works poorly for functional and
volatile bugs

* Problem: Throwing away part of a
program may introduce undefined
behavior

 Example:
int foo (void) {
int x;

D e

return Xx;

42

e Solution 1: Use the test case
generator to reduce program size

— Generator already knows how to avoid
undefined behavior

e Solution 2: Bounded exhaustive
testing

—Generate all programs
—Test smallest ones first

More Problems...

 Assume an overnight run of our
tester found 500 programs that
trigger compiler failures

—Did we just find one compiler bug or 500?
—If more than one, how to prioritize them?

Ongoing Work

e Testing more compilers

— Especially those for safety-critical
embedded systems

* Bug triage

* |dentification of flawed or
incomplete bug fixes

Lessons Learned

 Random testing is very powerful

 However

— Adjusting probabilities is hard

— Generating expressive output that is still
correct is hard

Lessons Learned

 Compilers for embedded systems
are often highly buggy

—Even expensive compilers

* Workstation compilers for major
platforms are better
— But still buggy

More Lessons

* Aggressive optimizations are buggy

— But most compilers have bugs even with
minimal or no optimization

* No need to generate exotic code to
find compiler bugs

* We already benchmark compilers
for performance

* Why not also have benchmarks for
compiler correctness?

* Can bounded exhaustive testing +
whitebox techniques be used to get
formal guarantees about compiler
behavior?

Compiler Certification?

* Currently it consists of things like:

— Passing test suites
— Being used for a long time

* These are a bad joke

 Compiler output can be meaningfully
certified, but not compilers

— The CompCert project may change this
situation

Conclusions

* C compilers require stress testing

—Test suites insufficient by far

* Generating conforming test inputs is
not totally straightforward

* We can benchmark C compiler
quality

53

Volatile Testing Details

Testing Volatile

* Instrumented execution
environments monitor accesses to
volatile-qualified locations
—Valgrind for x86
—RealView ISS for ARM
— Avrora for AVR
— Etc.

 Check for violations of the volatile
invariant

Test case
generator

C prongl\

Compiler 1 | Compiler 2 @ Compiler 3

WItS 1

@ @
«——vote —
majority minority

const volatile int x;
volatile int y;

void foo (void) {
for (y=0; y>10; y++)

{

int z

Volatile Bug #1

foo: movl
movl
Jmp

.L2: movl
incl
movl

.L3: movl
cmpl
J9
ret

Xy

GCC4.3.0/1A32 /-Os

$0, y

X, %eax
.L3

Yy, %eax
seax
seax, y
Yy, %eax
$10, %eax
.L3

Volatile Bug

volatile int a;

baz:
movl
leal
movl
{ leal
a += 7;
movl
} addl
movl
ret

void baz (void) {
int 1;
for (i=0;

i<3; i+

LLYM-GCC 2.2 /IA32 /-02

58

a, %seax
7 (%eax),
secx, a
14 (%$eax),
secx, a
$21, %eax
seax, a

$ecx

$ecx

Do Volatile Bugs Matter?

* A researcher was compiling Linux
kernel using LLVM

— Kernels failed to run — too many accesses to
volatiles were optimized away

—Developers had to manually wrap these
accesses in memory barriers

* After 9 volatile bugs that we
reported were fixed, compiled Linux
kernels run reliably

Why is volatile miscompiled?

* Conflicts with optimizations
* Hard to test

 Compiler test suites don’t contain a
lot of volatiles

Experiment 1:
Work Around Volatile Errors

* |dea: “protect” volatile accesses

from overeager compilers via hal~-

61

Volatile Helper Results

_ volatile - vol. errs.
errs. (%) fixed (%)
IA32 / GCC 3.4.6 1.228 0.300 76
IA32 / GCC 4.0.4 0.038 0.018 ol
IA32 / GCC 4.1.2 0.195 0.016 92
IA32 / GCC 4.2.4 0.766 0.002 100
IA32 / GCC 4.3.1 0.709 0.000 100
IA32 / LLVM-GCC 2.2 18.720 0.047 100,
AVR / GCC 343 1.928 0.434
AVR / GCC 4.1.2 0.037 0.033
AVR / GCC 4.2.2 0.727 0.021

Why do helpers work?

* Our guess: The rules for volatile
accesses are more like function calls
than they are like regular variable
accesses

 And compilers can get function calls
right (usually)

Why do helpers not work?

* Our guess: Compilers were
generating wrong code irrespective
of volatile

Recommendations

* |If you use volatile:

— Definitely: Look at the compiler output

—Maybe: Develop test cases for your
compiler that come from your code

— Maybe: Factor volatile accesses into helper
functions

—Maybe: Compile modules that use volatile
without optimizations

