
Can We Make

Compilers That Work?

John Regehr

September 2010

• Undergrad
– Kansas State 1990-1995

– Math and computer science

• Grad school
– University of Virginia 1995-2001

– 1 summer internship at a small company– 1 summer internship at a small company

– 2 summer internships at Microsoft Research

• Postdoctoral researcher
– Utah CS 2001-2003

• On the faculty at Utah CS since 2003

2

• Reported 277 bugs to teams

developing C compilers

– Most have been fixed

• Found serious wrong-code bugs in

all C compilers we’ve testedall C compilers we’ve tested

– Including those used to compile safety-

critical embedded systems

– Including 6 bugs in a compiler that was

proved to be correct

3

• What’s going on here?

– Why can’t anyone create a C compiler that –

we can’t break?

4

• Our goal: Robust open-source

compilation tools

– We keep finding and reporting bugs until

we stop finding them

– Hasn’t happened after 2.5 years…– Hasn’t happened after 2.5 years…

• What about commercial compilers?

5

static int x;

static int *volatile z = &x;

static int foo (int *y) {

return *y;

}

int main (void) {

*z = 1; *z = 1;

printf ("%d\n", foo(&x));

return 0;

}

• Should print “1”

• GCC rev 164319 at –O2 on x86-64 prints “0”

6

• Do compiler bugs even matter?

– Students in my embedded systems courses

routinely encounter compiler bugs

– Large development efforts routinely – Large development efforts routinely

encounter compiler bugs

– C compiler is part of the trusted computing

base for most computer systems

7

• Symptoms of compiler bugs

1. Failure to emit code

2. Emitted code crashes or computes wrong

result

3. Emitted code violates the volatile invariant3. Emitted code violates the volatile invariant

• All tested compilers have bugs with

all three kinds of symptoms

8

Test case

generator

Compiler 1 Compiler 2 Compiler 3 …

C program

9

Compiler 1 Compiler 2 Compiler 3 …

vote
minoritymajority

results

Test Case Generator

• Grammar for C subset

• Lots of constraints

– Must declare a variable before using it

– Etc.

• Generator is driven by…

– Random search

– Depth first search

10

Not a Bug #1

int foo (int x)

{

return (x+1) > x;

}

$ gcc -O1 int.c -o int

$./int

0

$ gcc -O2 int.c -o int

$./int

int main (void)

{

printf ("%d\n",

foo (INT_MAX));

return 0;

}

$./int

1

11

Not a Bug #2

int bar (int x)

{

int i;

if (i > 10) x++;

return x;

$ clang -O0 init.c -o init

$./init

51

$ clang -O1 init.c -o init

$./initreturn x;

}

int main (void)

{

printf ("%d\n", bar (50));

}

$./init

50

12

Not a Bug #3

#include <stdio.h>

int main (void) {

long a = -1;

unsigned b = 1;

$ gcc compare.c -o compare

$./compare

0

$ gcc -m32 compare.c -o \unsigned b = 1;

printf ("%d\n", a > b);

return 0;

}

$ gcc -m32 compare.c -o \

compare

$./compare

1

13

• Property we require:

– Anytime changing the compiler or

optimization level changes the program’s

result, it’s a compiler bug

• Without this property, automated • Without this property, automated

testing is impossible

• Generated code must not…

– Execute undefined behavior (191 kinds)

– Rely on unspecified behavior (52 kinds)

14

More expressiveLess expressive

Less undefined / unspecified behavior

Lindig 07

McKeeman 98

Our work

15

More expressiveLess expressive

More undefined / unspecified behavior

Sheridan 07

Supported features:

• Arithmetic, logical, and bit
operations on integers

• For loops

• Conditionals

• Function calls

• Const and volatile

• Structs

Can easily add:

• Side-effecting expressions

• Comma operator

Probably not anytime soon:

• Interesting type casts

• Strings

• Unions• Structs

• Pointers and arrays

• Goto

• Switch

• Break, continue

• Bitfields

• Unions

• Floating point

• Nontrivial C++

• Nonlocal jumps

• Varargs

• Recursive functions

• Function pointers

• Dynamic memory alloc.
16

Avoiding Undefined and

Unspecified Behavior

• Offline avoidance is too difficult

– E.g. ensuring in-bounds array access

Online avoidance is too inefficient• Online avoidance is too inefficient

– E.g. ensuring validity of pointer to stack

• Solution: Combine static analysis

and dynamic checks

17

Order of Evaluation Problems

• Order of evaluation of function

arguments is unspecified

• E.g.• E.g.

foo(bar(),baz())

• Where bar() and baz() both modify

some variable

18

Order of Evaluation Problems

• Solution:

– Interprocedural analysis to compute

conservative read and write set for each

functionfunction

– In between sequence points, never invoke

functions where read and write sets

conflict

19

Integer Undefined Behaviors

• Undefined in C

– Divide by zero

– Shift by negative, shift past bitwidth– Shift by negative, shift past bitwidth

– Signed overflow

– Etc.

20

Undefined Integer Behaviors

• Solution: Wrap all potentially

undefined operations
int safe_signed_sub (int si1, int si2) {

if (((si1^si2) & (((si1^((si1^si2) if (((si1^si2) & (((si1^((si1^si2)

& (1 << (sizeof(int)*CHAR_BIT-1))))-si2)^si2))

< 0) {

return 0;

} else {

return si1 - si2;

}

}

21

Pointer Problems

• Undefined pointer behaviors…

– Using pointer to null

– Using pointer to out-of-scope data

– Creating or using an out of bounds pointer

22

Pointer Problems

• Solution:

– Some problems can be avoided using

dynamic checks

•• if (ptr) { … }

– Some problems require static analysis

• Dereferencing a global pointer that may

reference variables on the stack

• Casting away type qualifier

23

l_75 = g_20;

for (l_74 = 4; l_74 != 0;

l_74 -= 5)) {

int32_t l_81 = 0xD4B686F2L;

g_20 = func_78(func_10(g_4,
((g_20 <= l_85) & (g_20 &&
g_20)), 0xA49EL), (p_70 <= g_20)), 0xA49EL), (p_70 <=
func_52((l_81 <= l_81), g_20)),
l_75,
((safe_lshift_func_uint64_t_u_u
(l_74, l_76)) != (l_86 ==
0xF7AF164004C0D6AFLL)));

}

return g_4;
24

Results

• Mostly, compilers go wrong at

higher optimization levels

• But sometimes the compiler is

wrong…

– Only when optimizations are turned off– Only when optimizations are turned off

– Consistently at all optimization levels

– Because it was itself miscompiled

– Because a system library function is wrong

– Only very rarely

– About half of the time
26

Functional Bug 1 – GCC

• Version of GCC that ships with
Ubuntu 8.04 for x86 miscompiles:

int foo (void) {
signed char x = 1; signed char x = 1;
unsigned char y = -1;
return x > y;

}

• Correct return value is 0
27

Functional Bug 2 – Sun CC

uint32_t x;

int32_t bar (void) {

return 0xF58AAE07L;

}

void foo (void) { void foo (void) {

x = (0x9AE77AB3L || 1) <= bar ();

}

• foo() should assign 0 into x, instead assigns 1

• Wrong code generated at all optimization levels!

• Sun has assigned this bug “Priority 4 – Low”
28

Functional Bug 3 – LLVM-GCC

int32_t x;

void foo (int32_t y) {

x = 1; x = 1;

if (y){ for (;;) x = 1; }

}

• Emitted code does not store to x

29

• CompCert is a verified compiler

– Compiles C to PPC and ARM

– Produces a formal proof that the

compilation was correct

• We found • We found

– 3 bugs in the frontend

– 3 bugs in the backend

– 0 bugs in the (verified) middle part

30

Volatile Variables

• Abstract C machine tells us how

many times each variable is read

and written during an execution

Volatile Invariant

and written during an execution

• For volatile qualified variables, the

compiler must issue as many loads

as there are reads, and as many

stores as there are writes

31

Volatile Results

• We found systematic

miscompilation of volatiles!

– All compilers have bugs

– Some are very, very wrong

• What’s going on?

– Hard to test

– Volatile conflicts with optimizations

32

Can We Improve LLVM?

• Over a year we reported 55 bugs to

the LLVM developers

• They fixed these bugs and we

measured the effect on the quality

of this compiler

33

34

Compiler crashes

35

Volatile errors

36

Functional Errors

LLVM Non-Result #1

• Correlation between our bug

reports and compiler quality is

obviousobvious

• Causation very hard to prove

– LLVM team fixed many bugs besides ones

that we reported

37

LLVM Non-Result #2

• Of course LLVM is not now free of

bugs

• But it is better when…• But it is better when…

– Compiling the subset of C that we generate

– Targeting x86

– Using the standard –O[0123s] options

38

What If You Find a Compiler Bug?

1. Be extremely suspicious

– Most suspected compiler bugs turn out

to be problems in the compiled code

2. Create a small test case

3. Figure out what the answer is

supposed to be

4. Report it!

39

• Generating bug-inducing test cases

is easy and fast

• Creating actionable bug reports is

difficult and slowdifficult and slow

– Creating minimum-sized failure-inducing

compiler inputs is very hard

40

• Delta debugging is obvious way to

reduce size of failure-inducing tests

– Delta debugging == Repeatedly remove

part of the program and see if it remains

“interesting”

• Works well for compiler crashes

• Works poorly for functional and

volatile bugs

41

• Problem: Throwing away part of a
program may introduce undefined
behavior

• Example:

int foo (void) {

int x;

x = 1;

return x;

}

42

Oops!

• Solution 1: Use the test case

generator to reduce program size

– Generator already knows how to avoid

undefined behavior

• Solution 2: Bounded exhaustive • Solution 2: Bounded exhaustive

testing

– Generate all programs

– Test smallest ones first

43

More Problems…

• Assume an overnight run of our

tester found 500 programs that

trigger compiler failurestrigger compiler failures

– Did we just find one compiler bug or 500?

– If more than one, how to prioritize them?

44

Ongoing Work

• Testing more compilers

– Especially those for safety-critical

embedded systems

• Bug triage

• Identification of flawed or

incomplete bug fixes

45

Lessons Learned

• Random testing is very powerful

• However

– Adjusting probabilities is hard– Adjusting probabilities is hard

– Generating expressive output that is still

correct is hard

46

Lessons Learned

• Compilers for embedded systems

are often highly buggy

– Even expensive compilers–

• Workstation compilers for major

platforms are better

– But still buggy

47

More Lessons

• Aggressive optimizations are buggy

– But most compilers have bugs even with

minimal or no optimization

• No need to generate exotic code to

find compiler bugs

48

• We already benchmark compilers

for performance

• Why not also have benchmarks for • Why not also have benchmarks for

compiler correctness?

49

• Can bounded exhaustive testing +

whitebox techniques be used to get

formal guarantees about compiler formal guarantees about compiler

behavior?

50

Compiler Certification?

• Currently it consists of things like:

– Passing test suites

– Being used for a long time

These are a bad joke• These are a bad joke

• Compiler output can be meaningfully

certified, but not compilers

– The CompCert project may change this

situation

51

Conclusions

• C compilers require stress testing

– Test suites insufficient by far

• Generating conforming test inputs is • Generating conforming test inputs is

not totally straightforward

• We can benchmark C compiler

quality

52

53

Volatile Testing Details

Testing Volatile

• Instrumented execution
environments monitor accesses to
volatile-qualified locations
– Valgrind for x86– Valgrind for x86

– RealView ISS for ARM

– Avrora for AVR

– Etc.

• Check for violations of the volatile
invariant

55

Test case

generator

Compiler 1 Compiler 2 Compiler 3 …

C program

56

Compiler 1 Compiler 2 Compiler 3 …

vote
minoritymajority

results

Volatile Bug #1

const volatile int x;

volatile int y;

void foo(void) {

for (y=0; y>10; y++)

foo: movl $0, y

movl x, %eax

jmp .L3

GCC 4.3.0 / IA32 / -Os

57

for (y=0; y>10; y++)

{

int z = x;

}

}

jmp .L3

.L2: movl y, %eax

incl %eax

movl %eax, y

.L3: movl y, %eax

cmpl $10, %eax

jg .L3

ret

Volatile Bug #2

volatile int a;

void baz(void) {

int i;

for (i=0; i<3; i++)

baz:

movl a, %eax

leal 7(%eax), %ecx

58

for (i=0; i<3; i++)

{

a += 7;

}

}

movl %ecx, a

leal 14(%eax), %ecx

movl %ecx, a

addl $21, %eax

movl %eax, a

ret

LLVM-GCC 2.2 / IA32 / -O2

Do Volatile Bugs Matter?

• A researcher was compiling Linux
kernel using LLVM
– Kernels failed to run – too many accesses to

volatiles were optimized awayvolatiles were optimized away

– Developers had to manually wrap these
accesses in memory barriers

• After 9 volatile bugs that we
reported were fixed, compiled Linux
kernels run reliably

59

Why is volatile miscompiled?

• Conflicts with optimizations

• Hard to test

• Compiler test suites don’t contain a • Compiler test suites don’t contain a

lot of volatiles

60

Experiment 1:

Work Around Volatile Errors

• Idea: “protect” volatile accesses

from overeager compilers via helper

functionsint vol_read_int(volatile int *vp)

{ return *vp; }

opaquefunctions

61

{ return *vp; }

volatile int *vol_id_int(volatile int *vp)

{ return vp; }

x = vol_read_int(vol_1);

*vol_id_int(&vol_1) = 0;

x = vol_1;

vol_1 = 0;

Volatile Helper Results

arch. / compiler vers. volatile

errs. (%)

vol. errs.

w/help (%)

vol. errs.

fixed (%)

IA32 / GCC 3.4.6 1.228 0.300 76

IA32 / GCC 4.0.4 0.038 0.018 51

IA32 / GCC 4.1.2 0.195 0.016 92IA32 / GCC 4.1.2 0.195 0.016 92

IA32 / GCC 4.2.4 0.766 0.002 100

IA32 / GCC 4.3.1 0.709 0.000 100

IA32 / LLVM-GCC 2.2 18.720 0.047 100

AVR / GCC 3.4.3 1.928 0.434 77

AVR / GCC 4.1.2 0.037 0.033 10

AVR / GCC 4.2.2 0.727 0.021 97
62

Why do helpers work?

• Our guess: The rules for volatile

accesses are more like function calls

than they are like regular variable than they are like regular variable

accesses

• And compilers can get function calls

right (usually)

63

Why do helpers not work?

• Our guess: Compilers were

generating wrong code irrespective

of volatileof volatile

64

Recommendations

• If you use volatile:

– Definitely: Look at the compiler output

– Maybe: Develop test cases for your

compiler that come from your codecompiler that come from your code

– Maybe: Factor volatile accesses into helper

functions

– Maybe: Compile modules that use volatile

without optimizations

65

