
2/20/2010

1

© 2010 Carnegie Mellon University

Dangerous
Optimizations and the
Loss of Causality

CS 15-392

Robert C. Seacord

2

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING

INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO

WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,

BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,

EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON

UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the

trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded

research and development center. The Government of the United States has a royalty-free government-

purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have

or permit others to do so, for government purposes pursuant to the copyright license under the clause at

252.227-7013.

2/20/2010

2

3

Premise

Increasingly, compiler writers are taking advantage of
undefined behaviors in the C and C++ programming
languages to improve optimizations.

Frequently, these optimizations are interfering with
the ability of developers to perform cause-effect
analysis on their source code, that is, analyzing the
dependence of downstream results on prior results.

Consequently, these optimizations are eliminating
causality in software and are increasing the
probability of software faults, defects, and
vulnerabilities.

4

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

2/20/2010

3

5

Conformance [ISO/IEC 9899-1999]

implementation - Particular set of software, running in a

particular translation environment under particular control

options, that performs translation of programs for, and

supports execution of functions in, a particular execution

environment.

conforming - Conforming programs may depend on

nonportable features of a conforming implementation.

strictly conforming - A strictly conforming program is one

that uses only those features of the language and library

specified in the international standard. Strictly conforming

programs are intended to be maximally portable among

conforming implementations and can't, for example, depend

on implementation-defined behavior.

6

Behaviors [ISO/IEC 9899-1999]

implementation-defined behavior - Unspecified behavior

whereby each implementation documents how the choice is

made.

unspecified behavior - Behavior for which the standard

provides two or more possibilities and imposes no further

requirements on which is chosen in any instance.

undefined behavior - Behavior, upon use of a nonportable or

erroneous program construct or of erroneous data, for which

the standard imposes no requirements. An example of

undefined behavior is the behavior on integer overflow.

2/20/2010

4

7

Undefined Behaviors

Undefined behaviors are identified in the standard:

• If a “shall” or “shall not” requirement is violated, and that requirement

appears outside of a constraint, the behavior is undefined.

• Undefined behavior is otherwise indicated in this International

Standard by the words “undefined behavior”

• by the omission of any explicit definition of behavior.

There is no difference in emphasis among these three; they all

describe “behavior that is undefined”.

C99 Annex J.2, “Undefined behavior,” contains a list of explicit

undefined behaviors in C99.

8

Undefined Behaviors

Behaviors are classified as “undefined” by the standards

committees to:

• give the implementer license not to catch certain program errors that

are difficult to diagnose;

• avoid defining obscure corner cases which would favor one

implementation strategy over another;

• identify areas of possible conforming language extension: the

implementer may augment the language by providing a definition of

the officially undefined behavior.

Implementations may

• ignore undefined behavior completely with unpredictable results

• behave in a documented manner characteristic of the environment

(with or without issuing a diagnostic)

• terminate a translation or execution (with issuing a diagnostic).

2/20/2010

5

9

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

10

“Optimizing compilers are so difficult

to get right that we dare say that no

optimizing compiler is completely

error-free!”

Aho, Lam, Sethi, Ullman in Compilers:
Principles, Techniques, & Tools 2nd Edition

2/20/2010

6

11

Compiler Optimizations

The basic design of an optimizer for a C compiler is largely the

same as an optimizer for any other procedural programming

language.

The fundamental principle of optimization is to replace a

computation with a more efficient method that computes the

same result.

However, some optimizations change behavior

• Eliminate undefined behaviors (good)

• Introduce vulnerabilities (bad)

12

“As If” Rule 1

The ANSI C standard specifies the results of computations as

if on an abstract machine, but the methods used by the

compiler are not specified.

In the abstract machine, all expressions are evaluated as

specified by the semantics.

An actual implementation need not evaluate part of an

expression if it can deduce that

• its value is not used

• that no needed side effects are produced (including any caused by

calling a function or accessing a volatile object).

The compiler’s optimizer is free to choose any method that

produces the correct result.

2/20/2010

7

13

“As If” Rule 2

This clause gives compilers the leeway to remove
code deemed unused or unneeded when building a
program.

This is commonly called the “as if” rule, because the
program must run as if it were executing on the
abstract machine.

While this is usually beneficial, sometimes the
compiler removes code that it thinks is not needed,
even if the code has been added with security in
mind.

14

Implementation Strategies

Hardware behavior: generate the corresponding assembler

code, and let the hardware do whatever the hardware does.

For many years, this was the nearly-universal policy, so

several generations of C and C++ programmers have

assumed that all compilers behave this way

Super debug: provide an intensive debugging environment to

trap (nearly) every undefined behavior. This policy severely

degrades the application’s performance, so is seldom used for

building applications.

Total license: treat any possible undefined behavior as a “can’t

happen” condition. This permits aggressive optimizations.

2/20/2010

8

15

Total License Example 1

The total license policy has the effect of allowing anything to happen once

any undefined behavior occurs in the program.

Consider the following example:

if (cond) {

A[1] = X;

} else {

A[0] = X;

}

A total license implementation could determine that, in the absence of any
undefined behavior, the condition cond must have value 0 or 1.

That implementation could condense the entire statement into

A[cond] = X;

16

Total License Example 2

On modern hardware, branches are often expensive,

especially if the processor predicts them incorrectly, so

transformations similar to this one are commonly used today.

If undefined behavior occurred somewhere in the integer
arithmetic of cond, then cond could end up evaluating to a

value other than 0 or 1, producing an out-of-bounds store that

wasn’t apparent from the original source code.

Code review or static analysis would conclude that the
program modifies only A[0] or A[1].

The total license implementation defeats the ability to analyze

the behavior by

• a static analyzer

• a programmer performing a code review

2/20/2010

9

17

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

18

Constant Folding 1

Constant folding is the process of simplifying constant

expressions at compile time.

Terms in constant expressions can be

• simple literals, such as the integer 2

• variables whose values are never modified

• variables explicitly marked as constant

For example

int i = INT_MIN % -1;

printf("i = %d.\n", i);

Outputs:

i = 0;

2/20/2010

10

19

Constant Folding 2

Constant folding using MSVC 2008 with optimization disabled:

int i = INT_MIN % -1;

printf("i = %d.\n", i);

00401D43 mov esi,dword ptr [__imp__printf (406228h)]

00401D49 push edi

00401D4A push 0

00401D4C push offset string "i = %d.\n" (4039B4h)

00401D51 call esi

00401D53 add esp,8

20

Unexpected Results

A programmer may assume that INT_MIN % -1 is

well-defined for this implementation, when in fact the
operation faults at runtime.

i = atoi(argv[1]) % atoi(argv[2]);

00401D5B cdq

00401D5C idiv eax,ebx

Lesson: Be careful! Tests may not account for
unexpected optimizations.

2/20/2010

11

21

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

22

Adding a Pointer and an Integer

From C99 §6.5.6p8:

When an expression that has integer type is added to
or subtracted from a pointer, the result has the type
of the pointer operand.

An expression like P[N] is translated into *(P+N).

2/20/2010

12

23

Adding a Pointer and an Integer

C99 Section 6.5.6 says

If both the pointer operand and the result point to
elements of the same array object, or one past the
last element of the array object, the evaluation shall
not produce an overflow; otherwise, the behavior is
undefined.

If the result points one past the last element of the
array object, it shall not be used as the operand of a
unary * operator that is evaluated.

24

Bounds Checking 1

A programmer might code a bounds-check such as

char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t len;

if (ptr + len > max)

return EINVAL;

No matter what model is used, there is a bug.

If len is very large, it can cause ptr + len to overflow,

which creates undefined behavior.

Under the hardware behavior model, the result would typically

wrap-around—pointing to an address that is actually lower in
memory than ptr.

2/20/2010

13

25

Bounds Checking 2

In attempting to fix the bug, the experienced programmer (who

has internalized the hardware behavior model of undefined

behavior) might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

However, compilers that follow the total license model may

optimize out the first part of the check leaving the whole

bounds check defeated

This is allowed because

• if ptr plus (an unsigned) len compares less than ptr, then an

undefined behavior occurred during calculation of ptr + len

• the compiler can assume that undefined behavior never happens

• consequently ptr + len < ptr is dead code and can be removed

26

Algebraic Simplification

Optimizations may be performed for comparisons between
P + V1 and P + V2, where P is the same pointer and V1 and

V2 are variables of some integer type.

The total license model permits this to be reduced to a
comparison between V1 and V2.

However, if V1 or V2 are such that the sum with P overflows,

then the comparison of V1 and V2 will not yield the same

result as actually computing P + V1 and P + V2 and

comparing the sums.

Because of possible overflows, computer arithmetic does not

always obey the algebraic identities of mathematics.

2/20/2010

14

27

Algebraic Simplification Applied

In our example:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

this optimization translates as follows:

ptr + len < ptr

ptr + len < ptr + 0

len < 0 (impossible, len is unsigned)

28

Mitigation

This problem is easy to remediate, once it is called to
the attention of the programmer, such as by a
diagnostic message when dead code is eliminated.

For example, if it is known that ptr is less-or-equal-
to max, then the programmer could write:

if (len > max – ptr)

return EINVAL;

This conditional expression eliminates the possibility
of undefined behavior.

2/20/2010

15

29

Another Algebraic Simplification

In this example, the expression buf + n may wrap for large

values of n, resulting in undefined behavior.

int f(char *buf, size_t n) {

return buf + n < buf + 100;

}

When compiled using GCC 4.3.0 with the -O2 option, for

example, the expression

buf + n < buf + 100

is optimized to n < 100, eliminating the possibility of

wrapping.

Probably not a big deal unless one expression wraps but not

the other.

30

Mitigation

This code example is still incorrect, because it is not
safe to rely on compiler optimizations for security.

The undefined behavior can be eliminated by
performing the optimization by hand.

int f(char *buf, size_t n) {

return n < 100;

}

2/20/2010

16

31

GCC Details

The behavior of pointer overflow changed as of the
following versions:

• gcc 4.2.4

• gcc 4.3.1

• gcc 4.4.0

and all subsequent versions

• 4.2.x where x >= 4

• 4.3.y where y >= 1

• 4.z where z >= 4)

32

GCC Details

The optimization is

• performed by default at -O2 and above, including -Os.

• not performed by default at -O1 or -O0.

The optimization may be

• enabled for -O1 with the -fstrict-overflow

option.

• disabled for -O2 and above with the

-fno-strict-overflow option.

Cases where optimization occurs may be detected by
using -Wstrict-overflow=N where N >= 3.

2/20/2010

17

33

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

34

Integer Overflow

Signed integer overflow is undefined behavior in C99.

Implementations can

• silently wrap (the most common behavior)

• trap

• some combination of the above

2/20/2010

18

35

Integer Overflow

This code assumes that if it keeps doubling a positive number,

it will eventually get a negative number.

int f() {

int i;

int j = 0;

for (i = 1; i > 0; i += i)

++j;

return j;

}

When compiled with –O2, gcc v 4.3.2 interprets this code

according to the total license model in which overflow can not
occur and compiles this code into an infinite loop.

36

Real World Example

In the following example, derived from the GNU C Library 2.5
implementation of mktime (2006-09-09), the code assumes

wraparound arithmetic in + to detect signed overflow:

time_t t, t1, t2;

int sec_requested, sec_adjustment;

...

t1 = t + sec_requested;

t2 = t1 + sec_adjustment;

if (((t1 < t) != (sec_requested < 0))

| ((t2 < t1) != (sec_adjustment < 0)))

return -1;

2/20/2010

19

37

Hoisting of Loop-invariant Computations

Loop-invariant code consists of statements which can
be moved outside the body of a loop without affecting
the semantics of the program.

Loop-invariant code motion (also called hoisting or
scalar promotion) is a compiler optimization which
performs this movement automatically.

Loop-invariant code which has been hoisted out of a
loop is executed less often, providing a speedup.

38

Optimization Constraints

Implementations that detect signed integer overflows are constrained not to

transform a program that does not get an integer overflow into a program

that does get an integer overflow. It is not permitted to transform:

if (z < INT_MAX) {

y = z + 1;

}

into

temp = z + 1;

if (z < INT_MAX) {

y = temp;

}

unless the implementation can prove that z + 1 is not introducing an

overflow into a program that never had an overflow before.

2/20/2010

20

39

Hoisting of Loop-invariant Computations

In the following example, the subexpression si1 % si2 is

invariant in the loop and can be evaluated early.

signed int si1 = atoi(argv[1]);

signed int si2 = atoi(argv[2]);

signed int result = 8;

size_t i;

for (i = 0; i < 100; ++i) {

if (argc == 8)

i++;

result += i + si1 % si2;

}

40

for (i = 0; i < MAX; ++i) {

00401033 xor ecx,ecx

00401035 idiv eax,esi

00401037 mov eax,dword ptr [esp+10h]

0040103B mov edi,8

if (argc == 8)

00401040 cmp eax,8

00401043 jne main+37h (401047h)

i++;

00401045 inc ecx

00401046 inc edx

result += i + si1 % si2;

00401047 add edi,edx

00401049 inc ecx

0040104A inc edx

0040104B cmp ecx,64h

0040104E jb main+30h (401040h)

}

Invariant

subexpression

evaluated once

before start of loop

causing undefined

behavior and fault to

occur much earlier in

program.

2/20/2010

21

41

Observable Side-effects

signed int si1 = atoi(argv[1]);

signed int si2 = atoi(argv[2]);

signed int result = 8;

size_t i;

puts("log message one.\n");

for (i = 0; i < MAX; ++i) {

puts("log message two.\n");

if (argc == 8) i++;

result += i + si1 % si2;

puts("log message three.\n");

}

printf("Result = %d.\n", result);

UB is allowed to be

retroactive with

respect to program

output, so it's OK to

hoist inevitable UB

up past a call to a

function declared in
<stdio.h>.

42

Observable Side-effects

[rcs@gecko optimize]$ gcc optimize.c

[rcs@gecko optimize]$./a.out -2147483648 -1

log message one.

log message two.

Floating exception

[rcs@gecko optimize]$ gcc -O2 optimize.c

[rcs@gecko optimize]$./a.out -2147483648 -1

log message one.

Floating exception

It is unclear if it is OK to hoist
UB before a volatile access

2/20/2010

22

43

Incompatible Results 1

Compilers can generate code that is incompatible with

wraparound integer arithmetic.

An example is an algebraic simplification

For example, a compiler can translate

(i * 2000) / 1000

to

i * 2

because it assumes that i * 2000 does not overflow.

The translation is not equivalent to the original when overflow

occurs.

44

Incompatible Results 2

In the typical case of 32-bit signed two's complement
wraparound int, if i has type int and value 1073742 the

• non-optimized evaluates to −2147483

• optimized evaluates to the mathematically correct value 2147484.

Changing behavior between the non-optimized test code and

the optimized deliverable code

• can have negative consequences if the correct execution of the code

depends upon the wrapping behavior

• eliminates undefined behavior causing mathematically incorrect

results

Instead, perform algebraic simplification in the source code

• can be assisted by diagnostics such as -Wstrict-overflow

• analysis/debugging tools and techniques

2/20/2010

23

45

Loop Induction Variables

An induction variable is a variable that gets increased
or decreased by a fixed amount on every iteration of
a loop, or is a linear function of another induction
variable.

For example, in the following loop, i and j are

induction variables:

for (i = 0; i < 10; ++i) {

j = 17 * i;

}

46

Strength Reduction

A common compiler optimization is to recognize the
existence of induction variables and replace them
with simpler computations.

Assuming that the addition of a constant is cheaper
than a multiplication, the previous example could be
rewritten by the compiler as follows:

j = 0;

for (i = 0; i < 10; ++i) {

j = j + 17;

}

2/20/2010

24

47

Loop Induction

Loop induction optimizations often take advantage of
the undefined behavior of signed overflow.

int sumc(int lo, int hi) {

int sum = 0;

int i;

for (i = lo; i <= hi; i++)

sum ^= i * 53;

return sum;

}

48

Loop Induction and Overflow

To avoid multiplying by 53 each time through the loop an
optimizing compiler might internally transform sumc to the

following equivalent form:

int transformed_sumc (int lo, int hi) {

int sum = 0;

int hic = hi * 53;

int ic;

for (ic = lo * 53; ic <= hic; ic += 53)

sum ^= ic;

return sum;

}

This transformation is invalid for wraparound
arithmetic when INT_MAX / 53 < hi, because

then the overflow in computing expressions like
hi * 53 can cause the expression i <= hi to

yield a different value from the transformed
expression ic <= hic.

2/20/2010

25

49

Loop Induction and Overflow

Compilers that use loop induction and similar
techniques often do not support reliable wraparound
arithmetic when a loop induction variable is involved.

It is not always trivial to say whether the problem
affects your code

• loop induction variables are generated by the compiler

• are not visible in the source code

50

Unsigned Wrap

The C and C++ standards require that unsigned integers wrap

according to the rules of modulo arithmetic.

gcc never optimizes based on assuming that they do not wrap.

The IBM XL C/C++ compiler has a strict_induction

option

• turns off induction variable optimizations that have the potential to

alter the semantics of a user's program.

• used if a program contains loop induction variables that overflow or

wrap around.

• at -O or higher optimization level, the XL C/C++ compiler optimizes

both signed and unsigned loop induction variables when the
NOSTRICT_INDUCTION option is in effect.

2/20/2010

26

51

Restricted Range Usage 1

For the comparison a < b, there is often an implicit

subtraction.

• On a machine without condition codes (for example, the

Cray-2), the compiler may issue a subtract instruction

and check whether the result is negative.

• This is allowed, because the compiler is allowed to

assume there is no overflow.

52

Restricted Range Usage 2

If the user types the expression a - b where both a
and b are in the range [INT_MIN/2, INT_MAX/2],
then the result is in the range (INT_MIN, INT_MAX]

for a typical two's complement machine.

If all explicitly user-generated values are kept in the
range [INT_MIN/2, INT_MAX/2], then

comparisons will always work even if the compiler
performs this optimization.

This has been a trick of the trade in Fortran for some
time, and now that optimizing C compilers are
becoming more sophisticated, it can be valuable in C.

2/20/2010

27

53

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

54

-fstrict-overflow

Allow the compiler to assume strict signed overflow
rules (total license policy).

• signed arithmetic overflow is undefined behavior

• the compiler assume undefined behavior will not happen

• permits various optimizations

For example, the compiler assumes that an
expression like i + 10 > i is always true for
signed i.

This assumption is only valid if signed overflow is
undefined, as the expression is false if i + 10

overflows when using twos complement arithmetic.

2/20/2010

28

55

-fstrict-overflow

When this option is in effect any attempt to determine
whether an operation on signed numbers will
overflow must be written carefully to not actually
involve overflow.

The -fstrict-overflow option is enabled at
levels -O2, -O3, -Os.

56

-fwrapv

This option instructs gcc to assume that signed
arithmetic overflow of addition, subtraction and
multiplication wraps around using twos-complement
representation.

Very similar to –fno-strict-overflow

This flag disables optimizations that assume integer
overflow behavior is undefined.

This option is enabled by default for the Java front-
end, as required by the Java language specification.

2/20/2010

29

57

-Wstrict-overflow=n

This option only applies when -fstrict-overflow

is active.

It warns about cases where the compiler optimizes
based on the assumption that signed overflow does
not occur.

Only warns about overflow in cases where the
compiler implements some optimization.

Consequently, this warning depends on the
optimization level.

58

-Wstrict-overflow=n

An optimization which assumes that signed overflow
does not occur is safe as long as the values of the
variables involved are such that overflow does not
occur.

Therefore this warning can easily give a false
positive: a warning about code which is not actually a
problem.

No warnings are issued for the use of undefined
signed overflow when estimating how many iterations
a loop will require, in particular when determining
whether a loop will be executed at all.

2/20/2010

30

59

-Wstrict-overflow=1

Warn about cases which are both questionable and
easy to avoid.

For example:

x + 1 > x;

With -fstrict-overflow, the compiler simplifies

this to 1.

This level of -Wstrict-overflow is enabled by
-Wall; higher levels are not, and must be explicitly

requested.

60

-Wstrict-overflow=2

Also warns about cases where a comparison is
simplified to a constant.

For example: abs(x) >= 0. This can only be
simplified when -fstrict-overflow is in effect,
because abs(INT_MIN) overflows to INT_MIN,

which is less than zero.

2/20/2010

31

61

-Wstrict-overflow=3,4

-Wstrict-overflow=3 also warns about other cases

where a comparison is simplified.

For example:

x + 1 > 1 is simplified to x > 0.

This is the lowest warning level at which arithmetic

simplification leading to bounds checking errors are

diagnosed.

-Wstrict-overflow=4 also warns about other

simplifications not covered by the above cases.

For example:

(x * 10) / 5 is simplified to x * 2.

62

-Wstrict-overflow=5

Also warns about cases where the compiler reduces
the magnitude of a constant involved in a
comparison.

For example:

x + 2 > y is simplified to x + 1 >= y.

This is reported only at the highest warning level
because this simplification applies to many
comparisons, so this warning level results in a large
number of false positives.

2/20/2010

32

63

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

64

Clearing Sensitive Information

Sensitive data stored in reusable resources may be

inadvertently leaked to a less privileged user or adversary if

not properly cleared.

Examples of reusable resources include

• dynamically allocated memory

• statically allocated memory

• automatically allocated (stack) memory

• memory caches

• disk

• disk caches

The manner in which sensitive information can be properly

cleared varies depending on the resource type and platform.

2/20/2010

33

65

Dynamic Memory

Dynamic memory managers are not required to clear
freed memory and generally do not because of the
additional runtime overhead.

Furthermore, dynamic memory managers are free to
reallocate this same memory.

As a result, it is possible to accidentally leak sensitive
information if it is not cleared before calling a function
that frees dynamic memory.

Reallocating memory using the realloc() function

is a regenerative case of freeing memory.

66

Clearing Sensitive Information

To prevent information leakage, dynamic memory containing

sensitive information should be sanitized before being freed.

This is commonly accomplished by clearing the allocated
space (that is, filling the space with '\0' characters).

void getPassword(void) {

char pwd[64];

if (GetPassword(pwd, sizeof(pwd))) {

/* check password */

}

memset(pwd, 0, sizeof(pwd));

}

2/20/2010

34

67

Dead Code Removal

Compilers may remove code sections if the optimizer

determines that doing so will not alter the behavior of the

program.

An optimizing compiler could employ “dead store removal”;
that is, it could decide that pwd is never accessed after the call

to memset(), therefore the call to memset() can be

optimized away.

Consequently, the password remains in memory, possibly to

be discovered by some other process requesting memory.

There are several solutions to this problem, but no solution

appears to be both portable and optimal.

68

ZeroMemory()

This example uses the ZeroMemory() function

provided by many versions of the MSVC.

void getPassword(void) {

char pwd[64];

if (retrievePassword(pwd, sizeof(pwd))) {

/* check password */

}

ZeroMemory(pwd, sizeof(pwd));

}

A call to ZeroMemory() may be optimized out in a
similar manner as a call to memset().

2/20/2010

35

69

SecureZeroMemory()

The MSVC SecureZeroMemory() function

guarantees that the compiler does not optimize out
this call when zeroing memory.

void getPassword(void) {

char pwd[64];

if (retrievePassword(pwd, sizeof(pwd))) {

/* check password */

}

SecureZeroMemory(pwd, sizeof(pwd));

}

70

#pragma Directives

The #pragma directives in this example instruct the compiler to

avoid optimizing the enclosed code.

void getPassword(void) {

char pwd[64];

if (retrievePassword(pwd, sizeof(pwd))) {

/* check password */

}

#pragma optimize("", off)

memset(pwd, 0, sizeof(pwd));

#pragma optimize("", on)

}

This #pragma directive is supported on some versions of Microsoft

Visual Studio and may be supported on other compilers.

2/20/2010

36

71

Volatile-qualified Types

An object that has volatile-qualified type may be modified in

ways unknown to the implementation or have other unknown

side effects.

The volatile keyword imposes restrictions on access and

caching.

According to the C99 Rationale [ISO/IEC 03]:

No cacheing through this lvalue: each operation in the abstract

semantics must be performed (that is, no cacheing

assumptions may be made, since the location is not

guaranteed to contain any previous value).

In the absence of this qualifier, the contents of the designated

location may be assumed to be unchanged except for possible

aliasing.

72

Dead Code Removal

This code accesses the buffer after the call to memset().

void getPassword(void) {

char pwd[64];

if (retrievePassword(pwd, sizeof(pwd))) {

/* checking of password */

}

memset(pwd, 0, sizeof(pwd));

(volatile char)pwd = *(volatile char*)pwd;

}

Some implementations nullify only the first byte and leave the

remainder intact.

2/20/2010

37

73

secure_memset() Solution

The volatile type qualifier informs the compiler that the

memory should be overwritten and that the call to the
memset_s() function should not be optimized out.

void *secure_memset(void *v, int c, size_t n)

{

volatile unsigned char *p = v;

while (n--)

*p++ = c;

return v;

}

74

secure_memset() Solution

Prevents the clearing of memory from being optimized away,

and should work on any standard-compliant platform.

However, some compilers violate the standard by not always
respecting the volatile qualifier.

Also, this compliant solution may not be as efficient as

possible because the volatile type qualifier prevents the

compiler from optimizing the code at all.

Typically, some compilers replace calls to memset() with

equivalent assembly instructions that are much more efficient
than the memset() implementation.

Implementing a secure_ memset() function as shown in the

example may prevent the compiler from using the optimal

assembly instructions and may result in less efficient code.

2/20/2010

38

75

7.21.6.2 The memset_s Function

Synopsis

errno_t memset_s(void * restrict s,

rsize_t smax, int c, rsize_t n)

Description

The memset_s function copies the value of c (converted to an

unsigned char) into each of the first n characters of the

object pointed to by s. Unlike memset, any call to memset_s

shall be evaluated strictly according to the rules of the abstract

machine, as described in 5.1.2.3. That is, any call to
memset_s shall assume that the memory indicated by s and n

may be accessible in the future and therefore must contain the
values indicated by c.

76

Clearing Sensitive Information

While necessary for working with sensitive
information, this memset_s() function may not be

sufficient, as it does nothing to prevent memory from
being swapped to disk, or written out in a core dump.

More information on such issues is available at the
CERT C Secure Coding guideline MEM06-C.

2/20/2010

39

77

Common Error Using Volatile

This example contains a common mistake in which a
volatile variable is used to signal a condition about a
non-volatile data structure to another thread:

volatile int buffer_ready;

char buffer[BUF_SIZE];

void buffer_init() {

for (size_t i = 0; i < BUF_SIZE; i++)

buffer[i] = 0;

buffer_ready = 1;

}

Therefore, the compiler is free to move the loop below the
store to buffer_ready, defeating the developer’s intent.

The for-loop does not access any

volatile locations or perform any

side-effecting operations.

78

volatile Semantics

The semantics of volatile can’t always be trusted.

void *pointer = (void *)0xDEADBEEF;

/* … */

while (*((volatile int *)ptr) & FLAG){}

gcc generates a single read instead of a loop for the
following code when

• reading and writing from registers in Linux code

• compiled with a special branch of gcc based off 4.3.2

Unclear what C99 requires in this situation.

2/20/2010

40

79

Compiler Bugs

The following C code for a function that resets a
watchdog timer in a hypothetical embedded system:

/* linker maps to the proper IO register */

extern volatile int WATCHDOG;

void reset_watchdog() {

WATCHDOG = WATCHDOG; /* load, then store */

}

Regardless of optimization level, a conforming
compiler must covert this to object code that loads
and then stores the WATCHDOG register.

80

Compiler Bugs

Recent versions of GCC for IA-32 emit correct
assembly code:

reset_watchdog:

movl WATCHDOG, %eax

movl %eax, WATCHDOG

ret

However, the latest version of GCC’s port to the
MSP430 microcontroller compiles the code into the
following assembly:

reset_watchdog:

ret

2/20/2010

41

81

Agenda

Undefined Behavior

Compiler Optimizations

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

82

Compatible Types in C

Two types are compatible if their types are the same.

Additional rules for determining whether two types
are compatible are described in C99

• §6.7.2 for type specifiers

• §6.7.3 for type qualifiers

• §6.7.5 for declarators

Two types need not be identical to be compatible.

If there are no rules allowing types to be compatible,
they are not.

2/20/2010

42

83

Compatible Types in C

Qualified types

• For two qualified types to be compatible, both must have the

identically qualified version of a compatible type; the order of type

qualifiers within a list of specifiers or qualifiers does not affect the

specified type.

Pointer types

• For two pointer types to be compatible, both must be identically

qualified and both must be pointers to compatible types.

Array types

• For two array types to be compatible, both must have compatible

element types, and if both size specifiers are present, and are

integer constant expressions, then both size specifiers must have

the same constant value.

84

Function Type Compatibility

A function type declared using the new prototype-style
declaration (such as int tree (int x)) is compatible

with another function type declared with a function prototype if:

• The return types are compatible.

• The parameters agree in number (including an ellipsis if one is

used).

• The parameter types are compatible. For each parameter declared

with a qualified type, its type for compatibility comparison is the

unqualified version of the declared type.

2/20/2010

43

85

Type Compatibility

Two structure, union, or enumerated types declared in separate translation

units are compatible if their tags and members satisfy the following

requirements:

• If one is declared with a tag, the other shall be declared with the same tag.

• If both are complete types, then the following additional requirements apply:

— there shall be a one-to-one correspondence between their members

such that each pair of corresponding members are declared with

compatible types, such that if one member of a corresponding pair is

declared with a name, the other member is declared with the same

name.

For two structures, corresponding members shall be declared in the same

order. For two structures or unions, corresponding bit-fields shall have the

same widths.

For two enumerations, corresponding members shall have the same

values.

86

Incompatible Types

The following types, which may appear to be
compatible, are not:

• unsigned int and int types are not compatible

• char , signed char , and unsigned char types are

not compatible

• int and long types are not compatible, even if they

have the same representation

2/20/2010

44

87

int and long Compatibility

The int and long keywords denote type specifiers.

The only additional rule in C99 is in § 6.7.2.2p4,
where it says:

• Each enumerated type is compatible with char, a signed integer

type, or an unsigned integer type.

• The choice of type is implementation-defined but shall be capable of

representing the values of all the members of the enumeration.

There are no rules allowing int and long to be

compatible, so they are not.

88

Compatible Types in C++

A separate notion of type compatibility as distinct
from being of the same type does not exist in C++.

Generally speaking, type checking in C++ is stricter
than in C: identical types are required in situations
where C would only require compatible types.

2/20/2010

45

89

Effective Type

The purpose of the effective type rules is to impute a
type (dynamically) to a dynamically-allocated object.

The effective type of an object for an access to its
stored value is the declared type of the object, if any
(allocated objects have no declared type).

If a value is stored into an object having no declared
type through an lvalue having a type that is not a
character type, then the type of the lvalue becomes
the effective type of the object for that access and for
subsequent accesses that do not modify the stored
value.

90

Effective Type

If a value is copied into an object having no declared
type using memcpy() or memmove(), or is copied as

an array of character type, then the effective type of
the modified object for that access and for
subsequent accesses that do not modify the value is
the effective type of the object from which the value is
copied, if it has one.

For all other accesses to an object having no
declared type, the effective type of the object is
simply the type of the lvalue used for the access.

2/20/2010

46

91

Effective Types 1

struct st {

char c; int i; long l; double d;

} s = { 1, 2, 3, 4 };

char *p = malloc(sizeof s); assert(p); // none at all

char *p0 = malloc(sizeof s); assert(p0);

memcpy(p0, &s, sizeof (s)); // struct st

void *p1 = malloc(sizeof s); assert(p1);

memcpy(p1, &s, sizeof (s)); // struct st

memcpy(p1, &s.i, sizeof (int)); // int

memcpy(p1, &s.i, sizeof (int)); // int

memcpy(p1, (float *) &s.i, sizeof (int)); // float

92

Effective Types 2

void *p2 = malloc(sizeof s); assert(p2);

memcpy(p2, (void *)&s, sizeof (s)); // struct st

void *p3 = malloc(sizeof s); assert(p3);

memcpy(p3, (char *)&s, sizeof (s)); // struct st

void *p4 = malloc(sizeof s); assert(p4);

*(struct st *)p4 = s; // struct st

2/20/2010

47

93

Aliasing Rules

One pointer is an alias of another pointer when both refer to the same

location or object.

An object’s stored value can only be accessed by an lvalue expression that

has:

• a type compatible with the effective type of the object,

• a qualified version of a type compatible with the effective type of the

object,

• a type that is the signed or unsigned type corresponding to the

effective type of the object,

• a type that is the signed or unsigned type corresponding to a

qualified version of the effective type of the object,

• an aggregate or union type that includes one of the aforementioned

types among its members (including, recursively, a member of a

subaggregate or contained union), or

• a character type.

94

Aliasing Rules

In f1, *pi can be assumed to be loop-invariant,

because the type-based aliasing rules don't allow
*pd to be an alias for *pi.

void f1(int *pi, double *pd, double d) {

for (int i = 0; i < *pi; i++) {

*pd++ = d;

}

}

Therefore, it is valid to transform the loop such that
*pi is loaded only once, at the top of the loop.

2/20/2010

48

95

Aliasing Rules

In f2, *pi cannot be assumed to be loop-invariant.

struct S { int a, b; };

void f2(int *pi, struct S *ps, struct S s) {

for (int i = 0; i < *pi; i++) {

*ps++ = s;

}

}

*pi (having type int) can be modified by an lvalue that has

aggregate type including a member of type int.

struct S is such a type, and the lvalue *ps has that type.

96

Aliasing Rules

Therefore, f2 could be called as follows:

struct S a[10] = { [9].b = 1000 };

f2(&a[9].b, a, (struct S){ 0, 0 });

Despite the fact that the initial value of *pi in the

loop is too large for the array, this usage would
nevertheless be safe.

*pi would have to be reloaded for each iteration,
and on the tenth iteration, the value of *pi would

become zero, the loop would terminate before the
loop writes past the end of the array.

2/20/2010

49

97

Aliasing

uint32_t swap_words(uint32_t arg) {

uint16_t * const sp = (uint16_t *)&arg;

uint16_t hi = sp[0];

uint16_t lo = sp[1];

sp[1] = hi;

sp[0] = lo;

return (arg);

}

arg would likely be returned unchanged
because a pointer to uint16_t cannot
be an alias to a pointer to uint32_t

when applying the strict aliasing rule.

The memory referred to by sp is
an alias of arg because they

refer to the same address in
memory.

98

No Strict Aliasing

typedef struct {

uint16_t a;

uint16_t b;

uint16_t c;

} Sample;

void test(uint32_t *value, Sample *uniform, uint64_t count){

uint64_t i;

for (i = 0; i < count; i++) {

values[i] += (uint32_t)uniform->b;

}

}

Compiled with -fno-strict-aliasing

uniform->b must be loaded during each

iteration of the loop.

Compiled with -fstrict-aliasing the load of uniform->b is

performed once before the loop.

2/20/2010

50

99

Type-Punning 1

If the member used to access the contents of a union object is not the

same as the member last used to store a value in the object, the

appropriate part of the object representation of the value is reinterpreted as

an object representation in the new type.

union a_union {

int i;

double d;

};

int f() {

a_union t;

t.d = 3.0;

return t.i;

}

Even with -fstrict-aliasing,

type-punning is allowed, provided

the memory is accessed through

the union type.

100

Type-Punning 2

This code might not work as expected:

int f() {

a_union t;

int *ip;

t.d = 3.0;

ip = &t.i;

return *ip;

}

Taking the address and

dereferencing the result has
undefined behavior.

2/20/2010

51

101

Type-Punning 3

Access by taking the address, casting the resulting
pointer and dereferencing the result has undefined
behavior, even if the cast uses a union type.

int f() {

double d = 3.0;

return ((union a_union *) &d)->i;

}

102

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

2/20/2010

52

103

inline, register, restrict

C99 defines several keywords which have no other
consequence than to influence optimization

inline

• suggests that calls to the function be as fast as possible.

• the extent to which such suggestions are effective is
implementation-defined.

register

• suggests that access to the object be as fast as possible.

• the extent to which such suggestions are effective is

implementation-defined.

104

restrict

An object that is accessed through a restrict-qualified
pointer has a special association with that pointer.

This association requires that all accesses to that
object use, directly or indirectly, the value of that
particular pointer.

The intended use of the restrict qualifier is to promote
optimization, and deleting all instances of the qualifier
from all preprocessing translation units composing a
conforming program does not change its meaning
(i.e., observable behavior).

2/20/2010

53

105

restrict

The restrict qualifier addresses the problem that
potential aliasing can inhibit optimizations.

Specifically, if a translator cannot determine that two
different pointers are being used to reference
different objects, then it cannot apply optimizations
such as

• maintaining the values of the objects in registers rather

than in memory

• reordering loads and stores of these values.

106

noreturn Function Attribute

You can declare a function as noreturn to inform the

compiler the function never returns.

void fatal () __attribute__ ((noreturn));

void fatal (/* ... */) {

/* Print error message. */

exit (1);

}

The noreturn keyword tells the compiler to assume that fatal

cannot return.

It can then optimize without regard to what would happen if

fatal ever did return.

2/20/2010

54

107

Optimization Suggestions

Optimizations may be performed without any
suggestions from the programmer.

Some suggestions like register and inline may

be ignored because the compiler can usually do a
better job.

Some suggestions like noreturn may be followed

even if they are obviously wrong.

Analysis is usually better than suggestions because
there is less chance for error.

108

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

Null-pointer dereference

C1X Analyzability Annex

Summary and Recommendations

2/20/2010

55

109

Null Pointer Basics

A null pointer is often, but not necessarily, represented by all-

bits-zero (e.g., 0x00000000).

Because a null-valued pointer does not refer to a meaningful

object, an attempt to dereference a null pointer usually causes

a run-time error.

C99 guarantees that any null pointer will be equal to 0 in a

comparison with an integer type.

In C and C++ programming, two null pointers are guaranteed

to compare equal.

The macro NULL is defined as a null pointer constant, that is

value 0 (either as an integer type or converted to a pointer to
void), so a null pointer will compare equal to NULL.

110

Null-pointer Checks

gcc deletes null-pointer checks beyond the first use/test of a

pointer at optimization level 2 or higher.

void bad_code(void *a) {

int *b = a;

int c = *b;

static int d;

if (b) {

d = c;

}

}

Optimization can be disabled using
-fno-delete-null-pointer-checks

GCC assumes that the first use of b would

trigger a hardware fault if b == 0.

Consequently, a subsequent test is not

necessary and is removes

d = c is executed regardless of whether a

value of 0 was passed into the function

2/20/2010

56

static unsigned int tun_chr_poll(struct file *file,

poll_table * wait) {

struct tun_file *tfile = file->private_data;

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun->sk;

unsigned int mask = 0;

if (!tun) return POLLERR;

DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

/* … */

}

sk initialized to tun->sk

Checks if tun == NULL

GCC optimization removes the if (!tun) check

because it is performed after the assignment.

From Linux kernel 2.6.30

112

Why is this a Problem?

The Linux kernel could be locally exploited (before Linux

2.6.23) by

• mapping page zero with mmap() and crafting it with malicious

instructions

• trigger the bug in the process' context.

Because the kernel's data and code segment both have a

base of zero, a null pointer dereference makes the kernel

access page zero, a page filled with bytes the attacker

controls.

For targets such as the ARM7 that do not have a hardware

memory manager, null pointer dereferences cause silent

failures and exploitable vulnerabilities.

2/20/2010

57

113

Linux Kernel Patch

- struct sock *sk = tun->sk;

+ struct sock *sk;

unsigned int mask = 0;

if (!tun)

return POLLERR;

+ sk = tun->sk;

+

DBG(KERN_INFO "%s: tun_chr_poll\n", tun->dev->name);

114

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

2/20/2010

58

115

C1X Analyzability Annex

This annex specifies optional behavior that can aid in
the analyzability of C programs.

An implementation that defines
_ _STDC_ANALYZABLE_ _ shall conform to the

specifications in this annex.

116

Definitions

out-of-bounds store: an (attempted) access (3.1) that, at run

time, for a given computational state, would modify (or, for an

object declared volatile, fetch) one or more bytes that lie

outside the bounds permitted by this Standard.

bounded undefined behavior: undefined behavior (3.4.3) that

does not perform an out-of-bounds store.

NOTE 1 The behavior might perform a trap.

NOTE 2 Any values produced or stored might be

indeterminate values.

critical undefined behavior: undefined behavior that is not

bounded undefined behavior.

NOTE The behavior might perform an out-of-bounds store or

perform a trap.

2/20/2010

59

117

Requirements

If the program performs a trap (3.19.5), the implementation is

permitted to invoke a runtime-constraint handler. Any such

semantics are implementation-defined.

All undefined behavior shall be limited to bounded undefined

behavior, except for the following which are permitted to result

in critical undefined behavior.

118

Critical Undefined Behaviors

An object is referred to outside of its lifetime (6.2.4).

An lvalue does not designate an object when evaluated (6.3.2.1).

A pointer is used to call a function whose type is not compatible with the

pointed-to type (6.3.2.3).

The operand of the unary * operator has an invalid value (6.5.3.2).

Addition or subtraction of a pointer into, or just beyond, an array object and

an integer type produces a result that points just beyond the array object

and is used as the operand of a unary * operator that is evaluated (6.5.6).

An argument to a library function has an invalid value or a type not

expected by a function with variable number of arguments (7.1.4).

The value of a pointer that refers to space deallocated by a call to the free

or realloc function is used (7.21.3).

A string or wide string utility function is instructed to access an array

beyond the end of an object (7.22.1, 7.27.4).

2/20/2010

60

119

Agenda

Undefined Behavior

Compiler Optimizations

Constant Folding

Adding a Pointer and an Integer

Integer Overflow

GCC Options

Clearing Sensitive Information

Strict Aliasing

Optimization Suggestions

C1X Analyzability Annex

Summary and Recommendations

120

Recommendations

Avoid undefined behaviors in your code, even if your code

appears to be working (for the time being).

Find and eliminate dead code yourself instead of letting the

compiler do it.

Some optimizations may eliminate undefined behaviors, while

others may introduce vulnerabilities.

Go go ahead and compile at -02

• Use compiler diagnostics such as -Wstrict-overflow to

determine if the compiler is optimizing based assumptions that are

different than your own.

• In many cases, you can rewrite the source code to more closely

resemble the optimized code and eliminate these warnings

2/20/2010

61

121

Summary

The C Standard is a contract between compiler
writers and programmers.

• The contract is being amended all the time

• WG14 membership consists primarily of compiler

developers

• Unless more security-conscious groups start to speak

up, the tendency is to eliminate guarantees

122

Questions
about
Strings

