Last Time

+ Priority-based scheduling
> Static priorities
> Dynamic priorities
+ Schedulable utilization
¢ Rate monotonic rule: Keep utilization below 69%

Today

¢ Response time analysis
¢ Blocking terms
o Priority inversion
> And solutions
& Release jitter
¢ Other extensions

Response Time vs. RM

¢ Rate monotonic result

> Tells us that a broad class of embedded systems meet their
time constraints:

« Scheduled using fixed priorities with RM or DM priority
assignment

« Total utilization not above 69%
> However, doesn’t give very good feedback about what is
going on with a specific system
¢ Response time analysis
> Tells us for each task, what is the longest time between
when it is released and when it finishes
Then these can be compared with deadlines

Gives insight into how close the system is to meeting / not
meeting its deadline

Is more precise (rejects fewer systems)
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Computing Response Time

¢ WC response time of highest priority task R,
> Ry =C,
> Hopefully obvious

¢ WC response time of second-priority task R,
> Case 1: R, =T,
* Ry;=C,+C,

R, R T T,

e

More Second-Priority

¢ Case 2: T;<R,=2T,
> Ry=C, +2C,

R, T, R, 2T, T,
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¢ Case 3: 2T, <R, =3T,
> Ry;=C, +3C,

¢ General case of the second-priority task:
> Ry=C, +ceiling (R,/T,)C,

Task i Response Time
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¢ hp(i) is the set of tasks with priority higher than |
> Only higher-priority tasks can delay a task

¢ General case:

¢ Problem with using this equation in practice?




Computing Response Times

¢ Rewrite as a recurrence relation and solve by
iterating: N
Ri

R'™ =Ci+ G

Viehp(i)| 7

# Finished when R™' = R
> Orwhen R" > D;
¢ Choose R?=0o0rR=C;
> There may be many solutions to the recurrence

> These starting points guarantee convergence to the
smallest solution (unless there is divergence)

¢ Resultis invalid if R; > T,
> Why?

Response Time Example

¢ Task1: T=30,D=30,C=10

¢ Task2: T=40,D=40,C=10

¢ Task3: T=52,D=52,C=12

+ Utilization = 81% — Rejected by the rate monotonic
test!
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+R,=10
¢ R,=20
& Ry=52

Sharing Resources

# So far tasks are assumed to be independent
> Not allowed to block (e.g. on a network device)
> Not allowed to contend for shared resources
+ Big problem in practice!
# Solution:
» Compute worst-case blocking time for each task
> Longest time that task is delayed by a lower-priority task
> Why just lower priority?
¢ Now we can analyze the system again:

R™=Ci+Bi+ Y| R o
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Computing Blocking Terms

¢ How do we compute blocking terms?
> Depends on the synchronization protocol
& Tasks synchronize by disabling interrupts
> Best answer: Each task gets blocking term with length of
the longest critical section in a lower-priority task
> Simpler answer: Each task gets blocking term with length of
the longest critical section in any task
> Why do these work?
+ Tasks synchronize using mutexes
> Blocking term generally impossible to bound — oops!
> Standard thread locks are unfriendly to real-time systems
 Lock wait queue is FIFO
> Possible solution: Priority queues for mutexes

Priority Inversion

« Priority inversion: Low-priority task delays a high
priority task
> Mutexes (even with priority queuing) provide unbounded
priority inversion

preemption P(s) - blocks T1
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Priority Inversion Case Study

¢ Mars Pathfinder
> Lands on Mars July 4 1997
> Mission is successful
¢ Behind the scenes...
> Sporadic total system resets on the rover
> Caused by priority inversion
> Debugged on the ground, software patch uploaded to fix
things
# Details
> Rover controlled by a single RS6000 running vxWorks
> Rover devices polled over 1553 bus
> At 8 Hz bc_sched task sets up bus transactions
> bc_dist task runs (also at 8 Hz) to read back data




More Pathfinder

¢ Symptom:
> bc_sched sometimes was not finished by the time bc_dist
ran
> This triggered a system reset
« Should never happen since these tasks are high priority
¢ Problem: bc_sched shared a mutex with AS/MET
task, which does meteorological science at low
priority
> Occasionally the classic priority inversion happened when
there were long-running medium priority tasks
# Solution:
> vxWorks supports “priority inheritance” with a global flag
> They turned it on

Priority Inversion Solutions

1. Avoid blocking — disable interrupts instead
¢ Pros:
4 Efficient
4 Simple
¢ Con:
4 Also delays unrelated, high priority tasks
2. Immediate priority ceiling protocol — before locking,
raise priority to highest priority of any thread that
can touch that semaphore
¢ Pros:
4 Fairly simple
@ Less blocking of unrelated tasks
¢ Cons:
4 Requires ahead-of-time system analysis
4 Still has some pessimistic blocking

Priority Inversion Solutions

3. Priority inheritance protocol — When a task is
blocking other tasks (by holding a mutex) it
executes at the priority of the highest-priority
blocked task
¢ Pros

4 No pessimistic blocking
¢ Cons
4 Complicated in presence of nested locking
4 Not that efficient
4 Blocking terms larger than IPCP

¢ Other solutions exist, such as lock-free
synchronization

IPCP Bonus

< In IPCP, raising priority prevents anyone else who
might access a resource from running
> So why take a lock at all?
> Turns out that locking is not necessary - raising priority is
enough
> HOWEVER: Task must not voluntarily block (e.g. on disk or
network) while in a critical section

Overheads

¢ Areal RTOS requires time to:
> Block a task
> Make a scheduling decision
> Dispatch a new task
> Handle timer interrupts
¢ For a well-designed RTOS these times can be
bounded

> Worst-case blocking time of the RTOS needs to be added to
each task’s blocking term
> 2x worst-case context switch time needs to be added to
each task’s WCET
« We always “charge” the cost of a context switch to the
higher-priority task

Release Jitter

¢ Release jitter J; — Time between invocation of task i
and time at which it can actually run
> E.g. task becomes conceptually runnable at the start of its
period
« But must wait for the next timer interrupt before the
scheduler sees it and dispatches it

> Or, task would like to run but must wait for network data to
arrive before it actually runs
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Other Extensions

¢ Sporadically periodic tasks
> Task has an “outer period” and smaller “inner period”
> Models bursty processing like network interrupts
¢ Sporadic servers
> Provide rate-limiting for truly aperiodic processing
« E.g. interrupts from an untrusted device
+ Arbitrary deadlines
> When D, > T, previous equations do not apply
> Can rewrite
+ Precedence constraints
> Task A cannot run until Task B has completed
* Models scenario where tasks feed data to each other
> Makes it harder to schedule a system

Summary

o Priority based scheduling
> It’'s what RTOSs support
> A strong body of theory can be used to analyze these
systems
> Theory is practical: Many real-world factors can be modeled
¢ Response time analysis — supports worst-case
response time for each priority-based task
> Blocking terms
> Release jitter
« Priority inversion can be a major problem
> Solutions have interesting tradeoffs




