
Last Time

� Priority-based scheduling

� Static priorities

� Dynamic priorities

� Schedulable utilization

� Rate monotonic rule: Keep utilization below 69%



Today

� Response time analysis

� Blocking terms

� Priority inversion

� And solutions

� Release jitter� Release jitter

� Other extensions



Response Time vs. RM
� Rate monotonic result

� Tells us that a broad class of embedded systems meet their 
time constraints:

• Scheduled using fixed priorities with RM or DM priority 
assignment

• Total utilization not above 69%

� However, doesn’t give very good feedback about what is � However, doesn’t give very good feedback about what is 
going on with a specific system

� Response time analysis

� Tells us for each task, what is the longest time between 
when it is released and when it finishes

� Then these can be compared with deadlines

� Gives insight into how close the system is to meeting / not 
meeting its deadline

� Is more precise (rejects fewer systems)



Computing Response Time

� WC response time of highest priority task R1

� R1 = C1

� Hopefully obvious

� WC response time of second-priority task R2

Case 1: R ≤ T� Case 1: R2 ≤ T1

• R2 = C2 + C1

1

2

T
2

T
1

1

R
2R

1



More Second-Priority

� Case 2:  T1 < R2 ≤ 2T1

� R2 = C2 + 2C1

1

T
2

T
1

1

R
2R

1
2T

1

1

� Case 3:  2T1 < R2 ≤ 3T1

� R2 = C2 + 3C1

� General case of the second-priority task:

� R2 = C2 + ceiling ( R2 / T1 ) C1

1

2

1 1

2



Task i Response Time

� General case:

� hp(i) is the set of tasks with priority higher than I

∑
∈∀







+=

)(ihpj

j
j

i
ii C

T
RCR

� hp(i) is the set of tasks with priority higher than I

� Only higher-priority tasks can delay a task

� Problem with using this equation in practice?



Computing Response Times

� Rewrite as a recurrence relation and solve by 
iterating:

Finished when R n+1 = R n

∑
∈∀

+









+=

)(

1

ihpj

j
j

n

i
i

n

i C
T

R
CR

� Finished when Ri
n+1 = Ri

n

� Or when Ri
n > Di

� Choose Ri
0 = 0 or Ri

0 = Ci

� There may be many solutions to the recurrence

� These starting points guarantee convergence to the 
smallest solution (unless there is divergence)

� Result is invalid if Ri > Ti

� Why?



Response Time Example

� Task 1: T = 30, D = 30, C = 10

� Task 2: T = 40, D = 40, C = 10

� Task 3: T = 52, D = 52, C = 12

� Utilization = 81% – Rejected by the rate monotonic 
test!

� R1 = 10

� R2 = 20

� R3 = 52

∑
∈∀

+









+=

)(

1

ihpj

j
j

n

i
i

n

i C
T

R
CR



Sharing Resources

� So far tasks are assumed to be independent

� Not allowed to block (e.g. on a network device)

� Not allowed to contend for shared resources

� Big problem in practice!

� Solution:

� Compute worst-case blocking time for each task

� Longest time that task is delayed by a lower-priority task

� Why just lower priority? 

� Now we can analyze the system again:

∑
∈∀

+









++=

)(

1

ihpj

j
j

n

i
ii

n

i C
T

R
BCR



Computing Blocking Terms

� How do we compute blocking terms?

� Depends on the synchronization protocol

� Tasks synchronize by disabling interrupts

� Best answer: Each task gets blocking term with length of 
the longest critical section in a lower-priority task

� Simpler answer: Each task gets blocking term with length of � Simpler answer: Each task gets blocking term with length of 
the longest critical section in any task

� Why do these work?

� Tasks synchronize using mutexes

� Blocking term generally impossible to bound – oops!

� Standard thread locks are unfriendly to real-time systems

• Lock wait queue is FIFO

� Possible solution: Priority queues for mutexes



Priority Inversion

� Priority inversion: Low-priority task delays a high 
priority task

� Mutexes (even with priority queuing) provide unbounded 
priority inversion

P(s) – blocks T1preemption

3

2

1

P(s) – succeeds

P(s) – blocks T1preemption



Priority Inversion Case Study

� Mars Pathfinder

� Lands on Mars July 4 1997

� Mission is successful

� Behind the scenes…

� Sporadic total system resets on the rover

Caused by priority inversion� Caused by priority inversion

� Debugged on the ground, software patch uploaded to fix 
things

� Details

� Rover controlled by a single RS6000 running vxWorks

� Rover devices polled over 1553 bus

� At 8 Hz bc_sched task sets up bus transactions

� bc_dist task runs (also at 8 Hz) to read back data



More Pathfinder

� Symptom:

� bc_sched sometimes was not finished by the time bc_dist 
ran

� This triggered a system reset

• Should never happen since these tasks are high priority

� Problem: bc_sched shared a mutex with ASI/MET � Problem: bc_sched shared a mutex with ASI/MET 
task, which does meteorological science at low 
priority

� Occasionally the classic priority inversion happened when 
there were long-running medium priority tasks

� Solution:

� vxWorks supports “priority inheritance” with a global flag

� They turned it on



Priority Inversion Solutions
1. Avoid blocking – disable interrupts instead

� Pros:

� Efficient

� Simple

� Con:

� Also delays unrelated, high priority tasks

2. Immediate priority ceiling protocol – before locking, 2. Immediate priority ceiling protocol – before locking, 
raise priority to highest priority of any thread that 
can touch that semaphore
� Pros:

� Fairly simple

� Less blocking of unrelated tasks

� Cons:

� Requires ahead-of-time system analysis

� Still has some pessimistic blocking



Priority Inversion Solutions

3. Priority inheritance protocol – When a task is 
blocking other tasks (by holding a mutex) it 
executes at the priority of the highest-priority 
blocked task 

� Pros

� No pessimistic blocking� No pessimistic blocking

� Cons

� Complicated in presence of nested locking

� Not that efficient

� Blocking terms larger than IPCP

� Other solutions exist, such as lock-free 
synchronization



IPCP Bonus

� In IPCP, raising priority prevents anyone else who 
might access a resource from running

� So why take a lock at all?

� Turns out that locking is not necessary – raising priority is 
enough

� HOWEVER: Task must not voluntarily block (e.g. on disk or � HOWEVER: Task must not voluntarily block (e.g. on disk or 
network) while in a critical section



Overheads

� A real RTOS requires time to:

� Block a task

� Make a scheduling decision

� Dispatch a new task

� Handle timer interrupts

� For a well-designed RTOS these times can be � For a well-designed RTOS these times can be 
bounded

� Worst-case blocking time of the RTOS needs to be added to 
each task’s blocking term

� 2x worst-case context switch time needs to be added to 
each task’s WCET

• We always “charge” the cost of a context switch to the 
higher-priority task



Release Jitter

� Release jitter Ji – Time between invocation of task i 
and time at which it can actually run

� E.g. task becomes conceptually runnable at the start of its 
period

• But must wait for the next timer interrupt before the 
scheduler sees it and dispatches itscheduler sees it and dispatches it

� Or, task would like to run but must wait for network data to 
arrive before it actually runs

∑
∈∀





 +

++=

)(ihpj

j
j

ii
iii C

T
JRBCR



Other Extensions

� Sporadically periodic tasks

� Task has an “outer period” and smaller “inner period”

� Models bursty processing like network interrupts

� Sporadic servers

� Provide rate-limiting for truly aperiodic processing

• E.g. interrupts from an untrusted device• E.g. interrupts from an untrusted device

� Arbitrary deadlines

� When Di > Ti previous equations do not apply

� Can rewrite 

� Precedence constraints

� Task A cannot run until Task B has completed

• Models scenario where tasks feed data to each other

� Makes it harder to schedule a system



Summary

� Priority based scheduling

� It’s what RTOSs support

� A strong body of theory can be used to analyze these 
systems

� Theory is practical: Many real-world factors can be modeled

� Response time analysis – supports worst-case � Response time analysis – supports worst-case 
response time for each priority-based task

� Blocking terms

� Release jitter

� Priority inversion can be a major problem

� Solutions have interesting tradeoffs


