Last Time

- Real-time scheduling using cyclic executives

Today

- Real-time scheduling using priorities
 - How to assign priorities?
 - Will the assigned priorities work?
 - What can we say in general about the scheduling algorithms?

Real-Time Review 1

- Motivation
 - Your car’s engine control CPU overloads → BAD
 - Airplane doesn’t update flaps on time → BAD
- System contains n periodic tasks T₁, …, Tₙ
- Tᵢ is specified by (Pᵢ, Cᵢ, Dᵢ)
 - P is period
 - C is execution cost (also called E)
 - D is relative deadline
- Task Tᵢ is “released” at start of period, executes for Cᵢ time units, must finish before Dᵢ time units have passed
 - Often Pᵢ=Dᵢ, and in this case we omit Dᵢ

Real-Time Review 2

- Given:
 - A set of real-time tasks
 - A scheduling algorithm
- Is the task set schedulable?
 - Yes → all deadlines met, forever
 - No → at some point a deadline might be missed
- Ways to schedule
 - Cyclic executive
 - Static priorities
 - Dynamic priorities
 - …

Cyclic Exec. Vs. Priorities

- Priorities are more flexible but less predictable
- Priorities may be fixed at design time or computed at runtime

Today’s Assumptions

- Tasks are running on an RTOS
 - Each task runs in its own preemptive thread
 - Scheduled using priorities
- Uniprocessor embedded system
 - If system has multiple processors we analyze them separately
 - This works unless we want tasks to migrate between processors
- Tasks don’t synchronize using locks
 - Later we’ll see how to avoid this assumption
- No OS overhead
 - Later we’ll see how to avoid this assumption
How to assign priorities?
- Rate monotonic (RM)
 - Shorter period tasks get higher priority
- Deadline monotonic (DM)
 - Tasks with shorter relative deadlines get higher priority
- Both RM and DM...
 - Have good theoretical properties
 - Work well in practice
- Other considerations
 - Criticality
 - Output jitter requirement

Example
- System with 4 tasks:
 - $T_1 = (4, 1)$, $T_2 = (5, 1.8)$, $T_3 = (20, 1)$, $T_4 = (20, 2)$
- What is the RM priority assignment?
- What is the DM priority assignment?
- Will these priority assignments work?
 - Remember: “work” means no deadlines missed, ever

Utilization
- Utilization of a task: C / P
- Utilization of a task set: Sum of task utilizations
- Schedulable utilization of a scheduling algorithm:
 - Every set of periodic tasks with utilization less or equal than the schedulable utilization of an algorithm can be feasibly scheduled by that algorithm
- Higher schedulable utilization is better
- Schedulable utilization is always ≥ 0.0 and ≤ 1.0
- Question: What is the schedulable utilization of...
 - FIFO scheduling?
 - EDF scheduling?
 - Generic fixed priority scheduling?
 - RM scheduling?

How about dynamic priorities?
- Dynamic priority means that priorities are not fixed at design time – the system can keep changing them as it runs
- Example algorithms
 - Earliest deadline first (EDF)
 - Least slack time first (LST)
 - First-in first-out (FIFO)
 - Last-in first-out (LIFO)
- Which of these work, for the example from the previous slide?

FIFO Schedulable Utilization
- $U_{\text{FIFO}} = 0.0$
 - Oops!
- Proof
 - Pick a utilization u
 - Pick an arbitrary period p
 - Create a task set with two tasks
 - Task 1 has $C = p \times u/2$, $P = p$ (utilization = $u/2$)
 - Task 2 has $C = p$, $P = p \times 2/u$ (utilization = $u/2$)
 - This task set has utilization u and is not schedulable

EDF Schedulable Utilization
- $U_{\text{EDF}} = 1.0$
 - As long as we ignore synchronization between tasks
 - We’ll return to this result later
Fixed Priority Schedulable Utilization

- $U_{FP} = 0$
- $U_{RM} = ?$
- $U_{RM} \neq 1$

Simply Periodic Case

- A set of tasks is simply periodic if, for every pair of tasks, one period is multiple of other period.
- Result: A system of simply periodic, independent, preemptible tasks whose relative deadlines are equal to their periods is schedulable according to RM iff their total utilization does not exceed 1.0.
- Proof:
 - Assume T_i misses deadline at time t
 - t is integer multiple of P_i and $P_{ik} < P_i$
 - Then, total time to complete jobs with deadline t is:
 \[
 \sum_{i} U_i \leq 1
 \]
 - T_i can only miss deadline if $U > 1.0$

General RM Case

- Theorem
 - n independent, preemptible, periodic tasks with $D_i P_i$ can be feasibly scheduled by RM if its total utilization U is less or equal to $m(2^n - 1)$.
 - For $n=1$, $U = 1.0$
 - For $n=2$, $U = 0.83$
 - For $n=\infty$, $U = 0.69$

RM Proof Sketch

- General idea
 - Find the most-difficult-to-schedule system of n tasks among all difficult-to-schedule systems of n tasks.
- Difficult-to-schedule
 - Fully utilizes processor for some time interval
 - Any increase in execution time would make system unschedulable
- Most-difficult-to-schedule
 - System with lowest utilization among difficult-to-schedule systems.
 - Difficult-to-schedule situations happen when all tasks are released at once.
 - First prove that this is the most difficult case.
 - Then prove that in this case, the system is schedulable.

Summary

- Fixed priority scheduling
- Not optimal – So why do we care?
 - Simple
 - Efficient
 - Easy to implement on standard RTOSs
 - Predictable – During overload low-priority jobs lose
- Fixed priority scheduling is heavily used in real embedded systems.