
1

Last Time

� Real-time scheduling using cyclic executives

Today

� Real-time scheduling using priorities

� How to assign priorities?

� Will the assigned priorities work?

� What can we say in general about the scheduling

algorithms?

Real-Time Review 1

� Motivation

� Your car’s engine control CPU overloads → BAD

� Airplane doesn’t update flaps on time → BAD

� System contains n periodic tasks T1, … , Tn

� Ti is specified by (Pi, Ci, Di)

� P is period

� C is execution cost (also called E)

� D is relative deadline

� Task Ti is “released” at start of period, executes for
Ci time units, must finish before Di time units have
passed

� Often Pi=Di, and in this case we omit Di

Real-Time Review 2

� Given:

� A set of real-time tasks

� A scheduling algorithm

� Is the task set schedulable?

� Yes → all deadlines met, forever

� No → at some point a deadline might be missed

� Ways to schedule

� Cyclic executive

� Static priorities

� Dynamic priorities

� …

Cyclic Exec. Vs. Priorities

tasks

cyclic schedule
executive processor

tasks

priority queue
processorPriority driven

Cyclic exec.

Design time Run time

� Priorities are more flexible but less predictable

� Priorities may be fixed at design time or computed at
runtime

Today’s Assumptions

� Tasks are running on an RTOS

� Each task runs in its own preemptive thread

� Scheduled using priorities

� Uniprocessor embedded system

� If system has multiple processors we analyze them

separately

• This works unless we want tasks to migrate between
processors

� Tasks don’t synchronize using locks

� Later we’ll see how to avoid this assumption

� No OS overhead

� Later we’ll see how to avoid this assumption

2

How to assign priorities?

� Rate monotonic (RM)

� Shorter period tasks get higher priority

� Deadline monotonic (DM)

� Tasks with shorter relative deadlines get higher priority

� Both RM and DM…

� Have good theoretical properties

� Work well in practice

� Other considerations

� Criticality

� Output jitter requirement

Example

� System with 4 tasks:

� T1 = (4,1), T2 = (5, 1.8), T3 = (20, 1), T4 = (20, 2)

� What is the RM priority assignment?

� What is the DM priority assignment?

� Will these priority assignments work?

� Remember: “work” means no deadlines missed, ever

Utilization

� Utilization of a task: C / P

� Utilization of a task set: Sum of task utilizations

� Schedulable utilization of a scheduling algorithm:

� Every set of periodic tasks with utilization less or equal than

the schedulable utilization of an algorithm can be feasibly
scheduled by that algorithm

� Higher schedulable utilization is better

� Schedulable utilization is always ≥ 0.0 and ≤ 1.0

� Question: What is the schedulable utilization of…

� FIFO scheduling?

� EDF scheduling?

� Generic fixed priority scheduling?

� RM scheduling?

How about dynamic priorities?

� Dynamic priority means that priorities are not fixed
at design time – the system can keep changing them
as it runs

� Example algorithms

� Earliest deadline first (EDF)

� Least slack time first (LST)

� First-in first-out (FIFO)

� Last-in first-out (LIFO)

� Which of these work, for the example from the
previous slide?

FIFO Schedulable Utilization

� UFIFO = 0.0

� Oops!

� Proof

� Pick a utilization u

� Pick an arbitrary period p

� Create a task set with two tasks

• Task 1 has C = p * u/2, P = p (utilization = u/2)

• Task 2 has C = p, P = p * 2/u (utilization = u/2)

� This task set has utilization u and is not schedulable

C1

C2

P2

P1

EDF Schedulable Utilization

� UEDF = 1.0

� As long as we ignore synchronization between tasks

� We’ll return to this result later

3

Fixed Priority
Schedulable Utilization

� UFP = 0

� URM = ?

� URM ≠ 0

� URM ≠ 1

C1

C2

P2

P1

T1

T2

1
)5,5.2,5(

)2,1,2(

2

2

1

1

2

1
≤ 100 %=+=





=

=

p
e

p
e

U
T

T

Deadline
miss!

Simply Periodic Case

� A set of tasks is simply periodic if, for every pair of
tasks, one period is multiple of other period

� Result: A system of simply periodic, independent,
preemptible tasks whose relative deadlines are equal
to their periods is schedulable according to RM iff
their total utilization does not exceed 1.0

� Proof:

� Assume Ti misses deadline at time t

� t is integer multiple of Pi and

� Then, total time to complete jobs with deadline t is:

� Ti can only miss deadline if U > 1.0

, ikk ppp <<<<∀∀∀∀

∑∑∑∑∑∑∑∑
========

⋅⋅⋅⋅====⋅⋅⋅⋅====
⋅⋅⋅⋅ i

k k

k
i

i

k k

k

p

e
tUt

p

et

11

General RM Case

� Theorem

� n independent, preemptible, periodic tasks with Di=Pi can be

feasibly scheduled by RM if its total utilization U is less or

equal to

� For n=1, U = 1.0

� For n=2, U ≈ 0.83

� For n=∞, U ≈ 0.69

)12(
1

−−−−
n

n

RM Proof Sketch

� General idea

� Find the most-difficult-to-schedule system of n tasks among

all difficult-to-schedule systems of n tasks

� Difficult-to-schedule

� Fully utilizes processor for some time interval

� Any increase in execution time would make system
unschedulable

� Most-difficult-to-schedule

� System with lowest utilization among difficult-to-schedule

systems

� Difficult-to-schedule situations happen when all tasks are

released at once

• First prove that this is the most difficult case

• Then prove that in this case, the system is schedulable

Summary

� Fixed priority scheduling

� Not optimal – So why do we care?

� Simple

� Efficient

� Easy to implement on standard RTOSs

� Predictable – During overload low-priority jobs lose

� Fixed priority scheduling is heavily used in real
embedded systems

