
Last Time

� Real-time scheduling using cyclic executives

Today

� Real-time scheduling using priorities

� How to assign priorities?

� Will the assigned priorities work?

� What can we say in general about the scheduling
algorithms?

Real-Time Review 1

� Motivation

� Your car’s engine control CPU overloads → BAD

� Airplane doesn’t update flaps on time → BAD

� System contains n periodic tasks T1, … , Tn

T is specified by (P , C , D)� Ti is specified by (Pi, Ci, Di)

� P is period

� C is execution cost (also called E)

� D is relative deadline

� Task Ti is “released” at start of period, executes for
Ci time units, must finish before Di time units have
passed

� Often Pi=Di, and in this case we omit Di

Real-Time Review 2

� Given:

� A set of real-time tasks

� A scheduling algorithm

� Is the task set schedulable?

� Yes → all deadlines met, forever

No → at some point a deadline might be missed� No → at some point a deadline might be missed

� Ways to schedule

� Cyclic executive

� Static priorities

� Dynamic priorities

� …

Cyclic Exec. Vs. Priorities

tasks

cyclic schedule
executive processorCyclic exec.

Design time Run time

tasks

priority queue
processorPriority driven

� Priorities are more flexible but less predictable

� Priorities may be fixed at design time or computed at
runtime

Today’s Assumptions

� Tasks are running on an RTOS

� Each task runs in its own preemptive thread

� Scheduled using priorities

� Uniprocessor embedded system

� If system has multiple processors we analyze them
separatelyseparately

• This works unless we want tasks to migrate between
processors

� Tasks don’t synchronize using locks

� Later we’ll see how to avoid this assumption

� No OS overhead

� Later we’ll see how to avoid this assumption

How to assign priorities?

� Rate monotonic (RM)

� Shorter period tasks get higher priority

� Deadline monotonic (DM)

� Tasks with shorter relative deadlines get higher priority

� Both RM and DM…

� Have good theoretical properties

� Work well in practice

� Other considerations

� Criticality

� Output jitter requirement

Example

� System with 4 tasks:

� T1 = (4,1), T2 = (5, 1.8), T3 = (20, 1), T4 = (20, 2)

� What is the RM priority assignment?

� What is the DM priority assignment?� What is the DM priority assignment?

� Will these priority assignments work?

� Remember: “work” means no deadlines missed, ever

Utilization

� Utilization of a task: C / P

� Utilization of a task set: Sum of task utilizations

� Schedulable utilization of a scheduling algorithm:

� Every set of periodic tasks with utilization less or equal than
the schedulable utilization of an algorithm can be feasibly
scheduled by that algorithmscheduled by that algorithm

� Higher schedulable utilization is better

� Schedulable utilization is always ≥ 0.0 and ≤ 1.0

� Question: What is the schedulable utilization of…

� FIFO scheduling?

� EDF scheduling?

� Generic fixed priority scheduling?

� RM scheduling?

How about dynamic priorities?

� Dynamic priority means that priorities are not fixed
at design time – the system can keep changing them
as it runs

� Example algorithms

� Earliest deadline first (EDF)

� Least slack time first (LST)

� First-in first-out (FIFO)

� Last-in first-out (LIFO)

� Which of these work, for the example from the
previous slide?

FIFO Schedulable Utilization

� UFIFO = 0.0

� Oops!

� Proof

� Pick a utilization u

� Pick an arbitrary period p

Create a task set with two tasks� Create a task set with two tasks

• Task 1 has C = p * u/2, P = p (utilization = u/2)

• Task 2 has C = p, P = p * 2/u (utilization = u/2)

� This task set has utilization u and is not schedulable

C1

C2

P2

P1

EDF Schedulable Utilization

� UEDF = 1.0

� As long as we ignore synchronization between tasks

� We’ll return to this result later

Fixed Priority
Schedulable Utilization

� UFP = 0
C1

C2

P2

P1

� URM = ?

� URM ≠ 0

� URM ≠ 1
T1

T2

1
)5,5.2,5(
)2,1,2(

2

2

1

1

2

1
≤ 100 %=+=





=

=

p
e

p
e

U
T

T

Deadline
miss!

Simply Periodic Case

� A set of tasks is simply periodic if, for every pair of
tasks, one period is multiple of other period

� Result: A system of simply periodic, independent,
preemptible tasks whose relative deadlines are equal
to their periods is schedulable according to RM iff
their total utilization does not exceed 1.0their total utilization does not exceed 1.0

� Proof:

� Assume Ti misses deadline at time t

� t is integer multiple of Pi and

� Then, total time to complete jobs with deadline t is:

� Ti can only miss deadline if U > 1.0

, ikk ppp <<<<∀∀∀∀

∑∑∑∑∑∑∑∑
========

⋅⋅⋅⋅====⋅⋅⋅⋅====
⋅⋅⋅⋅ i

k k

k
i

i

k k

k

p

e
tUt

p

et

11

General RM Case

� Theorem

� n independent, preemptible, periodic tasks with Di=Pi can be
feasibly scheduled by RM if its total utilization U is less or
equal to

� For n=1, U = 1.0

� For n=2, U ≈ 0.83

)12(
1

−−−−
n

n

� For n=2, U ≈ 0.83

� For n=∞, U ≈ 0.69

RM Proof Sketch

� General idea

� Find the most-difficult-to-schedule system of n tasks among
all difficult-to-schedule systems of n tasks

� Difficult-to-schedule

� Fully utilizes processor for some time interval

� Any increase in execution time would make system � Any increase in execution time would make system
unschedulable

� Most-difficult-to-schedule

� System with lowest utilization among difficult-to-schedule
systems

� Difficult-to-schedule situations happen when all tasks are
released at once

• First prove that this is the most difficult case

• Then prove that in this case, the system is schedulable

Summary

� Fixed priority scheduling

� Not optimal – So why do we care?

� Simple

� Efficient

� Easy to implement on standard RTOSs

Predictable – During overload low-priority jobs lose� Predictable – During overload low-priority jobs lose

� Fixed priority scheduling is heavily used in real
embedded systems

