
1

Today

� Intro to real-time scheduling

� Cyclic executives

� Scheduling tables

� Frames

� Frame size constraints

� Generating schedules

� Non-independent tasks

� Pros and cons

Real-Time Systems

� The correctness of a real-time system depends not
just on the validity of results but on the times at
which results are computed

� Computations have deadlines

� Usually, but not always, ok to finish computation early

� Hard real-time system: missed deadlines may be
catastrophic

� Soft real-time system: missed deadlines reduce the
value of the system

� Real-time deadlines are usually in the range of
microseconds through seconds

Real-Time System Examples

� Hard real-time

� Most feedback control systems

• E.g. engine control, avionics, …

• Missing deadlines affects stability of control

� Air traffic control

• Missing deadlines affects ability of airplanes to fly

� Soft real-time

� Windows Media Player

� Software DVD player

� Network router

� Games

� Web server

� Missing deadlines reduces quality of user experience

Real-Time Abstractions

� System contains n periodic tasks T1, … , Tn

� Ti is specified by (Pi, Ci, Di)

� P is period

� C is worst-case execution cost

� D is relative deadline

� Task Ti is “released” at start of period, executes for
Ci time units, must finish before Di time units have
passed

� Often Pi==Di, and in this case we omit Di

� Intuition behind this model:

� Real-time systems perform repeated computations that
have characteristic rates and response-time requirements

� What about non-periodic tasks?

Real Time Scheduling

� Given a collection of runnable tasks, the scheduler
decides which to run

� If the scheduler picks the wrong task, deadlines may be

missed

� Interesting schedulers:

� Fixed priorities

� Round robin

� Earliest deadline first (EDF)

� Many, many more exist

� A scheduler is optimal when, for a class of real-time
systems, it can schedule any task set that can be
scheduled by any algorithm

Real-Time Analysis

� Given:
� A set of real-time tasks

� A scheduling algorithm

� Is the task set schedulable?
� Yes → all deadlines met, always

� No → at some point a deadline might be missed

� Important: Answer this question at design time

� Other questions to ask:
� Where does worst-case execution cost come from?

� How close to schedulable is a non-schedulable task set?

� How close to non-schedulable is a schedulable task set?

� What happens if we change scheduling algorithms?

� What happens if we change some task’s period or execution
cost?

2

Cyclic Schedule

� This is an important way to sequence tasks in a real-
time system

� We’ll look at other ways later

� Cyclic scheduling is static – computed offline and
stored in a table

� For now we assume table is given

� Later look at constructing scheduling tables

� Task scheduling is non-preemptive

� No RTOS is required

� Non-periodic work can be run during time slots not
used by periodic tasks

� Implicit low priority for non-periodic work

� Usually non-periodic work must be scheduled preemptively

Cyclic Schedule Table

=

k

kii

k

 tat time scheduled is task periodic no if I

 tat time scheduled be tois T if T
)T(t

� Table executes completely in one hyperperiod H

� Then repeats

� H is least common multiple of all task periods

� N quanta per hyperperiod

� Multiple tables can support multiple system modes

� E.g., an aircraft might support takeoff, cruising, landing, and

taxiing modes

� Mode switches permitted only at hyperperiod boundaries

• Otherwise, hard to meet deadlines

Example

� Consider a system with four tasks

� T1 = (4,1)

� T2 = (5, 1.8)

� T3 = (20, 1)

� T4 = (20, 2)

� Possible schedule:

� Table starts out with:

� (0, T1), (1, T3), (2, T2), (3.8, I), (4, T1), …

T1 T3 T2 T4T1 T1 T1T2 T2

0 4 8 12 16 20

T2 T1

Refinement: Frames

� We divide hyperperiods into frames

� Timing is enforced only at frame boundaries

� Each task is executed as a function call and must fit within a

single frame

� Multiple tasks may be executed in a frame

� Frame size is f

� Number of frames per hyperperiod is F = H/f

Frame Size Constraints

1. Tasks must fit into frames

� So, f ≥ Ci for all tasks

� Justification: Non-preemptive tasks should finish executing

within a single frame

2. f must evenly divide H

� Equivalently, f must evenly divide Pi for some task i

� Justification: Keep table size small

More Frame Size Constraints

3. There should be a complete frame between the
release and deadline of every task

� Justification: Want to detect missed deadlines by the time

the deadline arrives

� Therefore: 2f – gcd (Pi, f) ≤ Di for each task i

t t+f t+2f t+3f

frame k frame k+1 frame k+2

Ti released

t’ t’+Di

t’+Pi

3

Example Revisited

� Consider a system with four tasks

� T1 = (4,1), T2 = (5, 1.8), T3 = (20, 1), T4 = (20, 2)

� H = lcm (4,5,20) = 20

� By Constraint 1: f ≥ 2

� By Constraint 2: f might be 1, 2, 4, 5, 10, or 20

� By Constraint 3: only 2 works

T1 T3 T2 T4T1 T1 T1T2 T2

0 4 8 12 16 20

T2 T1

Task Slices

� What if frame size constraints cannot be met?

� Example: T = { (4, 1), (5, 2, 7), (20, 5) }

• By Constraint 1: f ≥ 5

• By Constraint 3: f ≤ 4

� Solution: “slice” a task into smaller sub-tasks

� So (20, 5) becomes (20, 1), (20, 3), and (20, 1)

� Now f = 4 works

� What is involved in slicing?

Design Decision Summary

� Three decisions:

� Choose frame size

� Partition tasks into slices

� Place slices into frames

� In general these decisions are not independent

Cyclic Executive Pseudocode

// L is the stored schedule

current time t = 0;

current frame k = 0;

do forever

accept clock interrupt;

currentBlock = L(k);

t++;

k = t mod F;

if last task not completed, take appropriate action;
execute slices in currentBlock;

sleep until next clock interrupt;

Practical Considerations

� Handling frame overrun

� Main issue: Should offending task be completed or

aborted?

� How can we eliminate the possibility of overrun?

� Mode changes

� At hyperperiod boundaries

� How to schedule the code that figures out when it’s time to
change modes?

� Multiprocessor systems

� Similar to uniprocessor but table construction is more

difficult

� Splitting tasks

� Painful and error prone

Computing a Static Schedule

� Problem: Derive a frame size and schedule meeting
all constraints

� Solution: Reduce to a network flow problem

� Use constraints to compute all possible frame sizes

� For each possible size, try to find a schedule using network

flow algorithm

• If flow has a certain value:

– A schedule is found and we’re done

• Otherwise:

– Schedule is not found, look at the next frame size

� If no frame size works, system is not schedulable using
cyclic executive

4

Network Flow Problem

� Given a graph of links, each with a fixed capacity,
determine the maximum flow through the network

� Efficient algorithms exist

Flow Graph Definitions

� Denote all jobs in hyperperiod of F frames as J1…Jn

� Vertices:

� N job vertices J1, J2, …, JN

� F frame vertices 1, 2, …, F

� Edges:

� (source, Ji) with capacity Ci

• Encodes jobs’ compute requirements

� (Ji, x) with capacity f iff Ji can be scheduled in frame x

• Encodes periods and deadlines

� (f, sink) with capacity f

• Encodes limited computational capacity in each frame

Flow Graph Illustration

Source Sink

Ci

Ck

Ji

Jk

Jobs Frames

x

y

z

f

f

f

f

f

f

f

Finding a Schedule

� Maximum attainable flow is Σi=1..N Ci

� Total amount of computation in the hyperperiod

� If a max flow is found with this amount then we have a

schedule

� If a task is scheduled across multiple frames, we
must slice it into subtasks

� Potentially difficult

� However, if we don’t allow the algorithm to split tasks, the
problem becomes NP-complete

• Common pattern in this sort of problem

– E.g. optimal bin packing becomes easy if we can

split objects

Flow Graph Example

Source Sink

Ci / Ci

Ji

Jk

Jobs Frames

x

y

z

h / f

(Ci-h) / f

Ck / f

0 / f

0 / f
Ck / Ck

h / f

(Ck+Ci-h) / f

� This flow is telling us to split Ji into two jobs, one in
x and one in y, while Jk executes entirely in y

Non-Independent Tasks

� Precedence constraints: “Ti must execute before Tj”

� Enforce these by adjusting tasks’ release times and

deadlines

� Critical sections: “Ti must not be sliced in such a
way that Tj runs in the middle”

� These make the problem of finding a schedule NP-hard

5

CE Advantages

� Main advantage: Cyclic executives are very simple –
you just need a table

� Table makes the system very predictable

• Can validate and test with very high confidence

� No race conditions, no deadlock

� No processes, no threads, no locks, …

� Task dispatch is very efficient: just a function call

� Lack of scheduling anomalies

CE Disadvantages

� Cyclic executives are brittle – any change requires a
new table to be computed

� Release times of tasks must be fixed

� F could be huge

� Implies mode changes may have long latency

� All combinations of tasks that could execute
together must be analyzed

� Slicing tasks into smaller units is difficult and error-
prone

Summary

� Cyclic executive is one of the major software
architectures for embedded systems

� Historically, cyclic executives dominate safety-critical

systems

� Simplicity and predictability win

� However, there are significant drawbacks

� Finding a schedule might require significant offline

computation

