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& Data acquisition

« Digital filters and signal processing
> Filter examples and properties
> FIR filters
> Filter design
> Implementation issues
> DACs
> PWM

Data Acquisition Systems

¢ Many embedded systems measure quantities from
the environment and turn them into bits
> These are data acquisition systems (DAS)
> This is fundamental
¢ Sometimes data acquisition is the main idea
> Digital thermometer
> Digital camera
> Volt meter
> Radar gun
& Other times DAS is mixed with other functionality
> Digital signal processing
> Networking, storage
> Feedback control
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Why Care About DAS?

+ July 1983: Air Canada 143, a Boeing 767, runs out of
fuel in mid-air, lands on “abandoned” runway

¢ Poorly soldered fuel level sensor + mistakes that
defeated backup systems

Accuracy

¢ Instrument accuracy is the absolute error of the entire system,
including transducer, electronics, and software
o Let x,,; be measured value and x;; be the true value
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Resolution

+ Instrument resolution is the smallest input signal
difference that can be detected by the entire system
> May be limited by noise in either transducer or electronics

+ Spatial resolution of the transducer is the smallest
distance between two independent measurements

> Determined by size and mechanical properties of the
transducer

Precision

+ Precision is number of distinguishable alternatives,
n,, from which result is selected
¢ Can be expressed in bits or decimal digits
> 1000 alternatives: 10 bits, 3 decimal digits
> 2000 alternatives: 11 bits, 3.5 decimal digits
> 4000 alternatives: 12 bits, 3.75 decimal digits
> 10000 alternatives: >13 bits, 4 decimal digits

+ Range is resolution times precision: r, = Ax n,

Reproducibility

& Reproducibility specifies whether the instrument has
equal outputs given identical inputs over some time
period

+ Specified as full range or standard deviation of
output results given a fixed input

¢ Reproducibility errors often come from transducer
drift

ADC: How many bits?

+ Linear transducer case:
> ADC resolution must be 2 problem resolution

+ Nonlinear transducer case:
> Let x be the real-world signal with range r,
Lety be the transducer output with range r,
Let the required precision of x be n,
Resolutions of x and y are Ax and Ay
Transducer response described by y=f(x)
Required ADC precision n, (number of alternatives) is:
« Ax=r,/n,
* Ay = min { f(x + Ax) — f(x) } for all xin r,
Bits is ceiling(log, n,)

Y V V V V¥V

v

v

ADC: How many bits?

Ax

¢ ADC must be able to measure a change in voltage of
the smallest Ay

ADC: How many bits?
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¢ ADC must be able to measure a change in voltage of
the smallest Ay




DSP Big Picture
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Signal Reconstruction

¢ Analog filter gets rid of unwanted high-frequency
components in the output

¢ Zeroth-order hold .| [ Reconstructed analog signal
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Data Acquisition

+ Signal: Time-varying measurable quantity whose
variation normally conveys information
> Quantity often a voltage obtained from some transducer
> E.g.a microphone
+ Analog signals have infinitely variable values at all
times
+ Digital signals are discrete in time and in value
> Often obtained by sampling analog signals
> Sampling produces sequence of numbers
« Eg.{..., x[-2], x[-1], x[0], x[1], x[2], ... }
> These are time domain signals

Sampling

¢ Transducers
> Transducer turns a physical quantity into a voltage
> ADC turns voltage into an n-bit integer
> Sampling is typically performed periodically
> Sampling permits us to reconstruct signals from the world
« E.g. sounds, seismic vibrations
+ Key issue: aliasing
> Nyquist rate: 0.5 * sampling rate
> Frequencies higher than the Nyquist rate get mapped to
frequencies below the Nyquist rate

> Aliasing cannot be undone by subsequent digital
processing

Sampling Theorem

¢ Discovered by Claude Shannon in 1949:

A signal can be reconstructed from its samples
without loss of information, if the original signal has
no frequencies above 1/2 the sampling frequency

# This is a pretty amazing result

> But note that it applies only to discrete time, not
discrete values

Aliasing Details

+ Let N be the sampling rate and F be a frequency
found in the signal
> Frequencies between 0 and 0.5*N are sampled properly
> Frequencies >0.5*N are aliased

« Frequencies between 0.5*N and N are mapped to (0.5*N)-
F and have phase shifted 180°

« Frequencies between N and 1.5*N are mapped to f-N with
no phase shift

« Pattern repeats indefinitely

+ Aliasing may or may not occur when N == F*2*X
where X is a positive integer
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Avoiding Aliasing

1. Increase sampling rate
> Not a general-purpose solution
* White noise is not band-limited
« Faster sampling requires:
— Faster ADC
— Faster CPU
— More power
— More RAM for buffering
2. Filter out undesirable frequencies before sampling
using analog filter(s)
> This is what is done in practice
> Analog filters are imperfect and require tradeoffs

Aliasing in Space

& Spatial sampling incurs aliasing problems also
+ Example: CCD in digital camera samples an image in
a grid pattern
> Real world is not band-limited
> Can mitigate aliasing by increasing sampling rate
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Point vs. Supersampling

Point sampling

4x4 Supersampling

Digital Signal Processing

+ Basic idea
> Digital signals can be manipulated losslessly
> SW control gives great flexibility

o DSP examples
> Amplification or attenuation
> Filtering — leaving out some unwanted part of the signal
> Rectification — making waveform purely positive
> Modulation — multiplying signal by another signal
< E.g. a high-frequency sine wave

Assumptions

1. Signal sampled at fixed and known rate f,
> lLe., ADC driven by timer interrupts

2. Aliasing has not occurred
> le., signal has no significant frequency components
greater than 0.5*f;
> These have to be removed before ADC using an analog
filter
> Non-significant signals have amplitude smaller than the
ADC resolution

Filter Terms for CS People

¢ Low pass — lets low frequency signals through,
suppresses high frequency

+ High pass - lets high frequency signals through,
suppresses low frequency

¢ Passband - range of frequencies passed by a filter

¢ Stopband - range of frequencies blocked

+ Transition band — in between these

Simple Digital Filters

¢ y(n) = 0.5 * (x(n) + x(n-1))
> Why not use x(n+1)?
+ y(n) = (1.0/6) * (x(n) + x(n-1) + X(n-2) + ... + X(n-5) )
¢ y(n) = 0.5 * (x(n) + x(n-3))
¢ y(n) = 0.5 * (y(n-1) + x(n))
> What makes this one different?
¢ y(n) = median [ x(n) + x(n-1) + x(n-2) ]

Gain vs. Frequency

Gain
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Useful Signals
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FIR Filters

+ Finite impulse response

> Filter “remembers” the arrival of an impulse for a finite time
+ Designing the coefficients can be hard
¢ Moving average filter is a simple example of FIR

Moving Average Example
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SAMPLE fir_ basic (SAMPLE input, int ntaps,
const SAMPLE coeff[],
SAMPLE z[])

z[0] = input;

SAMPLE accum = 0;

for (int ii = 0; ii < ntaps; ii++) {
accum += coeff[ii] * z[ii];

}

for (ii = ntaps - 2; ii >= 0; ii--) {
z[ii + 1] = z[ii];

}

return accum;




Implementation Issues Filter Design

+ Usually done with fixed-point ¢ Where do coefficients come from for the moving
+ How to deal with overflow? average filter?

+ A few optimizations + Ingeneral:

> Put coefficients in registers T DeS|gn.f|Iter by_ hand
2. Use a filter design tool

> Put ple buffer in registers
> Block filter ¢ Few filters designed by hand in practice
+ Put both samples and coefficients in registers + Filters design requires tradeoffs between
« Unroll loops 1. Filter order
> Hardware-supported circular buffers 2. Transition width
3. Peak ripple amplitude
+ Creating very fast FIR implementations is important ¢ Tradeoffs are inherent
Filter Design in Matlab Filter Design Examples
¢ Matlab has excellent filter design support £=10.00.30.40.60.71.0];
> C = firpm (N, F, A) a=1 [ 1 1 0 01;
> N = length of filter - 1 £ill = firpm( 10, £, a);
> F = vector of frequency bands normalized to Nyquist £i12 = firpm( 17, £, a);
> A = vector of desired amplitudes £i13 = firpm( 30, £, a);
# firpm uses minimax - it minimizes the maximum fil4 = firpm(100, £, a);

deviation from the desired amplitude 112 =

Columns 1 through 8

-0.0278 —0.0395 —0.0019 -0.0595 0.0928 0.1250 -0.1667 —-0.1985
Columns 9 through 16

0.2154 0.2154 -0.1985 -0.1667 0.1250 0.0928 -0.0595 -0.001
Columns 17 through 18

-0.0395 -0.0278
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Testing an FIR Filter

¢ Impulse test
> Feed the filter an impulse
> Output should be the coefficients

& Step test

> Feed the filter a test
> Output should stabilize to the sum of the coefficients

¢ Sine test
> Feed the filter a sine wave
> Output should have the expected amplitude
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Digital to Analog Converters

¢ Opposite of an ADC
+ Available on-chip and as separate modules

> Also not too hard to build one yourself

¢ DAC properties:
> Precision: Number of distinguishable alternatives

« E.g. 4092 for a 12-bit DAC
> Range: Difference between minimum and maximum output

(voltage or current)
> Speed: Settling time, maximum output rate

¢ LPC2129 has no built-in DACs

Pulse Width Modulation

¢ PWM answers the question: How can we generate
analog waveforms using a single-bit output?
> Can be more efficient than DAC
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PWM

¢ Approximating a DAC:
> Set PWM period to be much lower than DAC period
> Adjust duty cycle every DAC period
¢ Important application of PWM is in motor control
> No explicit filter necessary — inertia makes the motor its own

low-pass filter
¢ PWM is used in some audio equipment




Summary

# Filters and other DSP account for a sizable
percentage of embedded system activity
« Filters involve unavoidable tradeoffs between
> Filter order
> Transition width
> Peak ripple amplitude
« In practice filter design tools are used
¢ We skipped all the theory!
> Lots of ECE classes on this




