Today

- Data acquisition
- Digital filters and signal processing
 - Filter examples and properties
 - FIR filters
 - Filter design
 - > Implementation issues
 - > DACs
 - > PWM

Data Acquisition Systems

Many embedded systems measure quantities from the environment and turn them into bits

- > These are data acquisition systems (DAS)
- > This is fundamental
- Sometimes data acquisition is the main idea
 - > Digital thermometer
 - > Digital camera
 - Volt meter
 - Radar gun
- Other times DAS is mixed with other functionality
 - > Digital signal processing
 - > Networking, storage
 - Feedback control

Why Care About DAS? Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system Image: Constraint of the system

Big Picture

Resolution

- Instrument resolution is the smallest input signal difference that can be detected by the entire system
 May be limited by noise in either transducer or electronics
- Spatial resolution of the transducer is the smallest distance between two independent measurements
 - > Determined by size and mechanical properties of the transducer

Precision

- Precision is number of distinguishable alternatives, n_x, from which result is selected
- Can be expressed in bits or decimal digits
 - > 1000 alternatives: 10 bits, 3 decimal digits
 - > 2000 alternatives: 11 bits, 3.5 decimal digits
 - > 4000 alternatives: 12 bits, 3.75 decimal digits
 > 10000 alternatives: >13 bits, 4 decimal digits
- Range is resolution times precision: $r_x = \Delta x n_x$

Reproducibility

- Reproducibility specifies whether the instrument has equal outputs given identical inputs over some time period
- Specified as full range or standard deviation of output results given a fixed input
- Reproducibility errors often come from transducer drift

ADC: How many bits?

• Linear transducer case:

- > ADC resolution must be ≥ problem resolution
- Nonlinear transducer case:
 - > Let x be the real-world signal with range r_x
 - > Let y be the transducer output with range ry
 - $\succ\,$ Let the required precision of x be n_x
 - \succ Resolutions of x and y are Δx and Δy
 - > Transducer response described by y=f(x)
 - \succ Required ADC precision $n_{\rm y}$ (number of alternatives) is:
 - $\Delta x = r_x/n_x$
 - $\Delta y = \min \{ f(x + \Delta x) f(x) \}$ for all x in r_x
 - Bits is ceiling(log₂ n_y)

Data Acquisition

- Signal: Time-varying measurable quantity whose variation normally conveys information
 - > Quantity often a voltage obtained from some transducer
 > E.g. a microphone
- Analog signals have infinitely variable values at all times
- Digital signals are discrete in time and in value
 - > Often obtained by sampling analog signals> Sampling produces sequence of numbers
 - E.g. { ... , x[-2], x[-1], x[0], x[1], x[2], ... }
 - > These are time domain signals

Sampling

Transducers

- > Transducer turns a physical quantity into a voltage
- > ADC turns voltage into an *n*-bit integer
- > Sampling is typically performed periodically
- Sampling permits us to reconstruct signals from the world
 E.g. sounds, seismic vibrations

Key issue: aliasing

- > Nyquist rate: 0.5 * sampling rate
- Frequencies higher than the Nyquist rate get mapped to frequencies below the Nyquist rate
- Aliasing cannot be undone by subsequent digital processing

Sampling Theorem

• Discovered by Claude Shannon in 1949:

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the sampling frequency

- This is a pretty amazing result
 - But note that it applies only to discrete time, not discrete values

Aliasing Details

- Let N be the sampling rate and F be a frequency found in the signal
 - > Frequencies between 0 and 0.5*N are sampled properly
 - > Frequencies >0.5*N are aliased Encourse in the target 0.5*N
 - Frequencies between 0.5*N and N are mapped to (0.5*N)-F and have phase shifted 180°
 - Frequencies between N and 1.5*N are mapped to f-N with no phase shift
 - · Pattern repeats indefinitely
- Aliasing may or may not occur when N == F*2*X where X is a positive integer

No Aliasing

1 kHz Signal, No Aliasing

Aliasing

Avoiding Aliasing

1. Increase sampling rate

- Not a general-purpose solution
 - White noise is not band-limited
 - Faster sampling requires:
 - Faster ADC
 Faster CPU
 - Faster CPU
 More power
 - More power
 More RAM for buffering
- 2. Filter out undesirable frequencies before sampling
 - using analog filter(s)
 - > This is what is done in practice
 - > Analog filters are imperfect and require tradeoffs

Signal Processing Pragmatics

Digital Signal Processing

Basic idea

- > Digital signals can be manipulated losslessly
- > SW control gives great flexibility

DSP examples

- > Amplification or attenuation
- > Filtering leaving out some unwanted part of the signal
- > Rectification making waveform purely positive
- > Modulation multiplying signal by another signal
- E.g. a high-frequency sine wave

Assumptions

Signal sampled at fixed and known rate f_s
 I.e., ADC driven by timer interrupts

2. Aliasing has not occurred

- $\succ\,$ I.e., signal has no significant frequency components greater than $0.5^{*}f_{s}$
- > These have to be removed before ADC using an analog filter
- Non-significant signals have amplitude smaller than the ADC resolution

Filter Terms for CS People

- Low pass lets low frequency signals through, suppresses high frequency
- High pass lets high frequency signals through, suppresses low frequency
- Passband range of frequencies passed by a filter
- Stopband range of frequencies blocked
- Transition band in between these

Simple Digital Filters

- ◆ y(n) = 0.5 * (x(n) + x(n-1))
 - Why not use x(n+1)?
- ♦ y(n) = (1.0/6) * (x(n) + x(n-1) + x(n-2) + ... + x(n-5))
- ♦ y(n) = 0.5 * (x(n) + x(n-3))
- ♦ y(n) = 0.5 * (y(n-1) + x(n))
- > What makes this one different?
- ♦ y(n) = median [x(n) + x(n-1) + x(n-2)]

Impulse Response

- Finite impulse response
- > Filter "remembers" the arrival of an impulse for a finite time
- Designing the coefficients can be hard
- Moving average filter is a simple example of FIR

Implementation Issues

- Usually done with fixed-point
- How to deal with overflow?
- A few optimizations
 - > Put coefficients in registers
 - > Put sample buffer in registers
 - Block filter
 - Put both samples and coefficients in registers
 Unroll loops
 - Hardware-supported circular buffers
- Creating very fast FIR implementations is important

Filter Design

- Where do coefficients come from for the moving average filter?
- In general:
 - 1. Design filter by hand
 - 2. Use a filter design tool
- Few filters designed by hand in practice
- Filters design requires tradeoffs between
 - 1. Filter order
 - 2. Transition width
 3. Peak ripple amplitude
- Tradeoffs are inherent

Filter Design in Matlab

- Matlab has excellent filter design support
 - > C = firpm (N, F, A)
 - N = length of filter 1
 - F = vector of frequency bands normalized to Nyquist
 - > A = vector of desired amplitudes
- firpm uses minimax it minimizes the maximum deviation from the desired amplitude

Filter Design Examples

Testing an FIR Filter

- Impulse test
 - Feed the filter an impulse
 - > Output should be the coefficients
- Step test
 - Feed the filter a test
 - > Output should stabilize to the sum of the coefficients
- Sine test
 - Feed the filter a sine wave
 - > Output should have the expected amplitude

Digital to Analog Converters

- Opposite of an ADC
- Available on-chip and as separate modules
 > Also not too hard to build one yourself
- DAC properties:
- > Precision: Number of distinguishable alternatives
 - E.g. 4092 for a 12-bit DAC
- Range: Difference between minimum and maximum output (voltage or current)
- > Speed: Settling time, maximum output rate
- LPC2129 has no built-in DACs

- Approximating a DAC:
 - Set PWM period to be much lower than DAC period
 Adjust duty cycle every DAC period
- Important application of PWM is in motor control
 No explicit filter necessary inertia makes the motor its own low-pass filter
- PWM is used in some audio equipment

Summary

- Filters and other DSP account for a sizable percentage of embedded system activity
- Filters involve unavoidable tradeoffs between
 - Filter order
 - Transition width
 - Peak ripple amplitude
- In practice filter design tools are used
- We skipped all the theory!
 - > Lots of ECE classes on this