Today

- Data acquisition
- Digital filters and signal processing
 - Filter examples and properties
 - FIR filters
 - Filter design
 - Implementation issues
 - DACs
 - PWM

Data Acquisition Systems

- Many embedded systems measure quantities from the environment and turn them into bits
 - These are data acquisition systems (DAS)
 - This is fundamental
- Sometimes data acquisition is the main idea
 - Digital thermometer
 - Digital camera
 - Volt meter
 - Radar gun
- Other times DAS is mixed with other functionality
 - Digital signal processing
 - Networking, storage
 - Feedback control

Big Picture

Accuracy

- Instrument accuracy is the absolute error of the entire system, including transducer, electronics, and software
- Let x_{m} be measured value and x_{f} be the true value
- Average accuracy:
 $$\frac{1}{N} \sum_{i=1}^{N} |x_i - x_{\text{f}}|$$
- Average accuracy of reading:
 $$\frac{100}{N} \sum_{i=1}^{N} \frac{|x_i - x_{\text{f}}|}{x_{\text{f}}}$$
- Average accuracy of full scale:
 $$\frac{100}{N} \sum_{i=1}^{N} \frac{|x_i - x_{\text{f}}|}{x_{\text{f}} \max}$$

Why Care About DAS?

- July 1983: Air Canada 143, a Boeing 767, runs out of fuel in mid-air, lands on “abandoned” runway
- Poorly soldered fuel level sensor + mistakes that defeated backup systems

More Accuracy

- Maximum error:
 $$\max |x_{\text{m}} - x_{\text{f}}|$$
- Maximum error of reading:
 $$\max \frac{|x_{\text{m}} - x_{\text{f}}|}{x_{\text{f}}}$$
- Maximum error of full scale:
 $$\max \frac{|x_{\text{m}} - x_{\text{f}}|}{x_{\text{f}} \max}$$
Resolution
- Instrument resolution is the smallest input signal difference that can be detected by the entire system
 - May be limited by noise in either transducer or electronics
- Spatial resolution of the transducer is the smallest distance between two independent measurements
 - Determined by size and mechanical properties of the transducer

Precision
- Precision is number of distinguishable alternatives, \(n_x \), from which result is selected
- Can be expressed in bits or decimal digits
 - 1000 alternatives: 10 bits, 3 decimal digits
 - 2000 alternatives: 11 bits, 3.5 decimal digits
 - 4000 alternatives: 12 bits, 3.75 decimal digits
 - 10000 alternatives: >13 bits, 4 decimal digits
- Range is resolution times precision: \(r_x = \Delta x \cdot n_x \)

Reproducibility
- Reproducibility specifies whether the instrument has equal outputs given identical inputs over some time period
- Specified as full range or standard deviation of output results given a fixed input
- Reproducibility errors often come from transducer drift

ADC: How many bits?
- Linear transducer case:
 - ADC resolution must be \(\geq \) problem resolution
- Nonlinear transducer case:
 - Let \(x \) be the real-world signal with range \(r_x \)
 - Let \(y \) be the transducer output with range \(r_y \)
 - Let the required precision of \(x \) be \(n_x \)
 - Resolutions of \(x \) and \(y \) are \(\Delta x \) and \(\Delta y \)
 - Transducer response described by \(y=f(x) \)
 - Required ADC precision \(n_y \) (number of alternatives) is:
 - \(\Delta x = r_x/n_x \)
 - \(\Delta y = \min \{ |f(x+\Delta x) - f(x)| \} \) for all \(x \) in \(r_x \)
 - Bits is ceiling(log₂ \(n_y \))
 - ADC must be able to measure a change in voltage of the smallest \(\Delta y \)
DSP Big Picture

Signal Reconstruction
- Analog filter gets rid of unwanted high-frequency components in the output

Data Acquisition
- Signal: Time-varying measurable quantity whose variation normally conveys information
 - Quantity often a voltage obtained from some transducer
 - E.g. a microphone
- Analog signals have infinitely variable values at all times
- Digital signals are discrete in time and in value
 - Often obtained by sampling analog signals
 - Sampling produces sequence of numbers
 - E.g. \(\{ \ldots, x[-2], x[-1], x[0], x[1], x[2], \ldots \} \)
 - These are time domain signals

Sampling
- Transducers
 - Transducer turns a physical quantity into a voltage
 - ADC turns voltage into an \(n \)-bit integer
- Sampling is typically performed periodically
- Sampling permits us to reconstruct signals from the world
 - E.g. sounds, seismic vibrations
- Key issue: aliasing
 - Nyquist rate: \(0.5 \times \) sampling rate
 - Frequencies higher than the Nyquist rate get mapped to frequencies below the Nyquist rate
 - Aliasing cannot be undone by subsequent digital processing

Sampling Theorem
- Discovered by Claude Shannon in 1949:
 A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the sampling frequency
- This is a pretty amazing result
 - But note that it applies only to discrete time, not discrete values

Aliasing Details
- Let \(N \) be the sampling rate and \(F \) be a frequency found in the signal
 - Frequencies between 0 and 0.5\(N \) are sampled properly
 - Frequencies >0.5\(N \) are aliased
 - Frequencies between 0.5\(N \) and \(N \) are mapped to (0.5\(N \))-\(F \) and have phase shifted 180°
 - Frequencies between \(N \) and 1.5\(N \) are mapped to \(F \) with no phase shift
 - Pattern repeats indefinitely
- Aliasing may or may not occur when \(N = F^{*2^X} \) where \(X \) is a positive integer
No Aliasing

1 kHz Signal, No Aliasing

Aliasing

Avoiding Aliasing

1. Increase sampling rate
 - Not a general-purpose solution
 - White noise is not band-limited
 - Faster sampling requires:
 - Faster ADC
 - Faster CPU
 - More power
 - More RAM for buffering

2. Filter out undesirable frequencies before sampling using analog filter(s)
 - This is what is done in practice
 - Analog filters are imperfect and require tradeoffs

Signal Processing Pragmatics

Aliasing in Space

- Spatial sampling incurs aliasing problems also
- Example: CCD in digital camera samples an image in a grid pattern
 - Real world is not band-limited
 - Can mitigate aliasing by increasing sampling rate
Digital Signal Processing

- Basic idea
 - Digital signals can be manipulated losslessly
 - SW control gives great flexibility

- DSP examples
 - Amplification or attenuation
 - Filtering – leaving out some unwanted part of the signal
 - Rectification – making waveform purely positive
 - Modulation – multiplying signal by another signal
 - E.g. a high-frequency sine wave

Assumptions

1. Signal sampled at fixed and known rate f_s
 - I.e., ADC driven by timer interrupts

2. Aliasing has not occurred
 - I.e., signal has no significant frequency components greater than $0.5f_s$
 - These have to be removed before ADC using an analog filter
 - Non-significant signals have amplitude smaller than the ADC resolution

Filter Terms for CS People

- Low pass – lets low frequency signals through, suppresses high frequency
- High pass – lets high frequency signals through, suppresses low frequency
- Passband – range of frequencies passed by a filter
- Stopband – range of frequencies blocked
- Transition band – in between these

Simple Digital Filters

- $y(n) = 0.5 \times (x(n) + x(n-1))$
 - Why not use $x(n+1)$?
- $y(n) = (1.0/6) \times (x(n) + x(n-1) + x(n-2) + \ldots + x(n-5))$
- $y(n) = 0.5 \times (x(n) + x(n-3))$
- $y(n) = 0.5 \times (y(n-1) + x(n))$
 - What makes this one different?
- $y(n) = \text{median} \{ x(n) + x(n-1) + x(n-2) \}$

Gain vs. Frequency

- $y(n) = \frac{y(n-1) + x(n)}{2}$
- $y(n) = \frac{x(n) + x(n-1)}{2}$
- $y(n) = \frac{x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-4) + x(n-5)}{6}$
- $y(n) = x(n) + x(n-3)$

Point vs. Supersampling

- Point sampling
- 4x4 Supersampling
Useful Signals

- **Step:**
 - \(..., 0, 0, 0, 1, 1, 1, ... \)

- **Impulse:**
 - \(..., 0, 0, 0, 1, 0, 0, ... \)

Step Response

Impulse Response

FIR Filters

- Finite impulse response
 - Filter “remembers” the arrival of an impulse for a finite time
- Designing the coefficients can be hard
- Moving average filter is a simple example of FIR

FIR in C

```c
SAMPLE fir_basic (SAMPLE input, int ntaps,
                    const SAMPLE coeff[],
                    SAMPLE z[]) {
    z[0] = input;
    SAMPLE accum = 0;
    for (int ii = 0; ii < ntaps; ii++) {
        accum += coeff[ii] * z[ii];
    }
    for (ii = ntaps - 2; ii >= 0; ii--) {
        z[ii + 1] = z[ii];
    }
    return accum;
}
```
Implementation Issues

- Usually done with fixed-point
- How to deal with overflow?
- A few optimizations
 - Put coefficients in registers
 - Put sample buffer in registers
 - Block filter
 - Put both samples and coefficients in registers
 - Unroll loops
 - Hardware-supported circular buffers
- Creating very fast FIR implementations is important

Filter Design

- Where do coefficients come from for the moving average filter?
- In general:
 1. Design filter by hand
 2. Use a filter design tool
- Few filters designed by hand in practice
- Filters design requires tradeoffs between
 1. Filter order
 2. Transition width
 3. Peak ripple amplitude
- Tradeoffs are inherent

Filter Design in Matlab

- Matlab has excellent filter design support
 - \(C = \text{firpm} \left(N, F, A\right) \)
 - \(N = \text{length of filter} - 1 \)
 - \(F = \text{vector of frequency bands normalized to Nyquist} \)
 - \(A = \text{vector of desired amplitudes} \)
- \(\text{firpm} \) uses minimax – it minimizes the maximum deviation from the desired amplitude

Filter Design Examples

\[
f = \begin{bmatrix} 0.0 & 0.3 & 0.4 & 0.6 & 0.7 & 1.0 \end{bmatrix};
a = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix};
\]

\[
\text{fil1} = \text{firpm}(10, f, a);
\]

\[
\text{fil2} = \text{firpm}(17, f, a);
\]

\[
\text{fil3} = \text{firpm}(30, f, a);
\]

\[
\text{fil4} = \text{firpm}(100, f, a);
\]

\[
\text{fil2} =
\begin{bmatrix}
-0.0278 & -0.0395 & -0.0019 & -0.0595 & 0.0928 & 0.1250 & -0.1667 & -0.1985 \\
0.2154 & 0.2154 & -0.1985 & -0.1667 & 0.1250 & 0.0928 & -0.0595 & -0.001 \\
-0.0395 & -0.0278 &
\end{bmatrix}
\]

Example Filter Response

- Matlab has excellent filter design support
- \(C = \text{firpm} \left(N, F, A\right) \)
- \(N = \text{length of filter} - 1 \)
- \(F = \text{vector of frequency bands normalized to Nyquist} \)
- \(A = \text{vector of desired amplitudes} \)
- \(\text{firpm} \) uses minimax – it minimizes the maximum deviation from the desired amplitude

Filter Design Examples

\[
f = \begin{bmatrix} 0.0 & 0.3 & 0.4 & 0.6 & 0.7 & 1.0 \end{bmatrix};
a = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 & 0 \end{bmatrix};
\]

\[
\text{fil1} = \text{firpm}(10, f, a);
\]

\[
\text{fil2} = \text{firpm}(17, f, a);
\]

\[
\text{fil3} = \text{firpm}(30, f, a);
\]

\[
\text{fil4} = \text{firpm}(100, f, a);
\]

\[
\text{fil2} =
\begin{bmatrix}
-0.0278 & -0.0395 & -0.0019 & -0.0595 & 0.0928 & 0.1250 & -0.1667 & -0.1985 \\
0.2154 & 0.2154 & -0.1985 & -0.1667 & 0.1250 & 0.0928 & -0.0595 & -0.001 \\
-0.0395 & -0.0278 &
\end{bmatrix}
\]
Testing an FIR Filter

- Impulse test
 - Feed the filter an impulse
 - Output should be the coefficients
- Step test
 - Feed the filter a test
 - Output should stabilize to the sum of the coefficients
- Sine test
 - Feed the filter a sine wave
 - Output should have the expected amplitude

Digital to Analog Converters

- Opposite of an ADC
- Available on-chip and as separate modules
 - Also not too hard to build one yourself
- DAC properties:
 - Precision: Number of distinguishable alternatives
 - E.g. 4092 for a 12-bit DAC
 - Range: Difference between minimum and maximum output (voltage or current)
 - Speed: Settling time, maximum output rate
- LPC2129 has no built-in DACs

Pulse Width Modulation

- PWM answers the question: How can we generate analog waveforms using a single-bit output?
 - Can be more efficient than DAC

PWM

- Approximating a DAC:
 - Set PWM period to be much lower than DAC period
 - Adjust duty cycle every DAC period
- Important application of PWM is in motor control
 - No explicit filter necessary – inertia makes the motor its own low-pass filter
- PWM is used in some audio equipment
Summary

- Filters and other DSP account for a sizable percentage of embedded system activity
- Filters involve unavoidable tradeoffs between
 - Filter order
 - Transition width
 - Peak ripple amplitude
- In practice filter design tools are used
- We skipped all the theory!
 - Lots of ECE classes on this