
Last Time

� Embedded networks

� Characteristics

� Requirements

� Simple embedded LANs

• Bit banged

• SPI• SPI

• I2C

• LIN

• Ethernet

Today

� CAN Bus

� Intro

� Low-level stuff

� Frame types

� Arbitration

� Filtering� Filtering

� Higher-level protocols

Motivation

� Some new cars contain > 3 miles of wire

� Clearly inappropriate to connect all pairs of
communicating entities with their own wires

� O(n2) wires

� CAN permits everyone on the bus to talk

� Cost ~$3 / node

• $1 for CAN interface

• $1 for the transceiver

• $1 for connectors and additional board area

CAN Bus

� Cars commonly have multiple CAN busses

� Physical redundancy for fault tolerance

� CAN nodes sold

� 200 million in 2001

� 300 million in 2004

� 400 million in 2009

What is CAN?

� Controller Area Network

� Developed by Bosch in the late 1980s

� Current version is 2.0, from 1991

� Multi-master serial network

� Bus network: All messages seen by all nodes

� Highly fault tolerant

� Resistant to interference

� Lossless in expected case

� Real-time guarantees can be made about CAN
performance

More about CAN

� Message based, with payload size 0-8 bytes

� Not for bulk data transfer!

� But perfect for many embedded control applications

� Bandwidth

� 1 Mbps up to 40 m

40 Kbps up to 1000 m� 40 Kbps up to 1000 m

� 5 Kbps up to 10,000 m

� CAN interfaces are usually pretty smart

� Interrupt only after an entire message is received

� Filter out unwanted messages in HW – zero CPU load

� Many MCUs – including ColdFire – have optional
onboard CAN support

CAN Bus Low Level

� CAN does not specify a physical layer

� Common PHY choice: Twisted pair with differential
voltages

� Resistant to interference

� Can operate with degraded noise resistance when one wire
is cutis cut

� Fiber optic also used, but not commonly

� Each node needs to be able to transmit and listen at
the same time

� Including listening to itself

Dominant and Recessive

� Bit encoding:

� Voltage difference → “dominant” bit == logical 0

� No voltage difference → “recessive” bit == logical 1

Bus Conflict Detection

� Bus state with two nodes transmitting:

dominant recessive

dominant dominant dominant

recessive dominant recessive

Node 2

Node 1

� So:

� When a node transmits dominant, it always hears dominant

� When a node transmits recessive and hears dominant, then
there is a bus conflict

� Soon we’ll see why this is important

recessive dominant recessive

More Low Level

� CAN Encoding: Non-return to zero (NRZ)

� Lots of consecutive zeros or ones leave the bus in a single
state for a long time

� In contrast, for a Manchester encoding each bit contains a
transition

� NRZ problem: Not self-clocking

� Nodes can easily lose bus synchronization

� Solution: Bit stuffing

� After transmitting 5 consecutive bits at either dominant or
recessive, transmit 1 bit of the opposite polarity

� Receivers perform destuffing to get the original message back

CAN Clock Synchronization

� Problem: Nodes rapidly lose sync when bus is idle

� Idle bus is all recessive – no transitions

� Bit stuffing only applies to messages

� Solution: All nodes sync to the leading edge of the
“start of frame” bit of the first transmitter

Additionally: Nodes resynchronize on every � Additionally: Nodes resynchronize on every
recessive to dominant edge

� Question: What degree of clock skew can by
tolerated by CAN?

� Hint: Phrase skew as ratio of fastest to slowest node clock
in the network

CAN is Synchronous

� Fundamental requirement: Everyone on the bus sees
the current bit before the next bit is sent

� This is going to permit a very clever arbitration scheme

� Ethernet does NOT have this requirement

• This is one reason Ethernet bandwidth can be much
higher than CANhigher than CAN

� Let’s look at time per bit:

� Speed of electrical signal propagation 0.1-0.2 m/ns

� 40 Kbps CAN bus → 25000 ns per bit

• A bit can travel 2500 m (max bus length 1000 m)

� 1 Mbps CAN bus → 1000 ns per bit

• A bit can travel 100 m (max bus length 40 m)

CAN Addressing

� Nodes do not have proper addresses

� Rather, each message has an 11-bit “field identifier”

� In extended mode, identifiers are 29 bits

� Everyone who is interested in a message type
listens for it

� Works like this: “I’m sending an oxygen sensor reading”

� Not like this: “I’m sending a message to node 5”

� Field identifiers also serve as message priorities

� More on this soon

CAN Message Types

� Data frame

� Frame containing data for transmission

� Remote frame

� Frame requesting the transmission of a specific identifier

� Error frame

� Frame transmitted by any node detecting an error

� Overload frame

� Frame to inject a delay between data and/or remote frames if
a receiver is not ready

CAN Data Frame

� Bit stuffing not shown here – it happens below this
level

Data Frame Fields

� RTR – remote transmission request

� Always dominant for a data frame

� IDE – identifier extension

� Always dominant for 11-bit addressing

� CRC – Based on a standard polynomial

� CRC delimiter – Always recessive

� ACK slot – This is transmitted as recessive

� Receiver fills it in by transmitting a dominant bit

� Sender sees this and knows that the frame was received

• By at least one receiver

� ACK delimiter – Always recessive

Remote Frame

� Same as data frame except:

� RTR bit set to recessive

� There is no data field

� Value in data length field is ignored

Error Checking

� Five different kinds of error checking are performed
by all nodes

� Message-level error checking

� Verify that checksum checks

� Verify that someone received a message and filled in the
ack slotack slot

� Verify that each bit that is supposed to be recessive, is

� Bit-level error checking

� Verify that transmitted and received bits are the same

• Except identifier and ack fields

� Verify that the bit stuffing rule is respected

Error Handling

� Every node is in error-active or error-passive state

� Normally in error-active

� Every node has an error counter

� Incremented by 8 every time a node is found to be
erroneous

� Decremented by 1 every time a node transmits or receives a � Decremented by 1 every time a node transmits or receives a
message correctly

� If error counter reaches 128 a node enters error-
passive state

� Can still send and receive messages normally

� If error counter reaches 256 a node takes itself off
the network

Error Frame

� Active error flag – six consecutive dominant bits

� This is sent by any active-error node detecting an error at
any time during a frame transmission

� Violates the bit stuffing rule!

• This stomps the current frame – nobody will receive it

� Following an active error, the transmitting node will � Following an active error, the transmitting node will
retransmit

� Passive error flag – six consecutive recessive bits

� This is “sent” by any passive-error node detecting an error

� Unless overwritten by dominant bits from other nodes!

� After an error frame everyone transmits 8 recessive
bits

Bus Arbitration

� Problem: Control access to the bus

� Ethernet solution: CSMA/CD

� Carrier sense with multiple access – anyone can transmit
when the medium is idle

� Collision detection – Stomp the current packet if two nodes
transmit at oncetransmit at once

• Why is it possible for two nodes to transmit at once?

� Random exponential backoff to make recurring collisions
unlikely

� Problems with this solution:

� Bad worst-case behavior – repeated backoffs

� Access is not prioritized

CAN Arbitration

� Nodes can transmit when the bus is idle

� Problem is when multiple nodes transmit
simultaneously

� We want the highest-priority node to “win”

� Solution: CSMA/BA

� Carrier sense multiple access with bitwise arbitration

� How it works:

� Two nodes transmit start-of-frame bit

• Nobody can detect the collision yet

� Both nodes start transmitting message identifier

• As soon as the identifiers differ at some bit position, the
node that transmitted recessive notices and aborts the
transmission

Multiple Colliding Nodes

Arbitration Continued

� Consequences:

� Nobody but the losers see the bus conflict

� Lowest identifier always wins the race

� So: Message identifiers also function as priorities

� Nondestructive arbitration

Unlike Ethernet, collisions don’t cause drops� Unlike Ethernet, collisions don’t cause drops

� This is cool!

� Maximum CAN utilization: ~100%

� Maximum Ethernet with CSMA/CD utilization: ~37%

CAN Message Scheduling

� Network scheduling is usually non-preemptive

� Unlike thread scheduling

� Non-preemptive scheduling means high-priority sender
must wait while low-priority sends

� Short message length keeps this delay small

� Worst-case transmission time for 8-byte frame with � Worst-case transmission time for 8-byte frame with
an 11-bit identifier:

� 134 bit times

� 134 µs at 1 Mbps

“Babbling Idiot” Error

� What happens if a CAN node goes haywire and
transmits too many high priority frames?

� This can make the bus useless

� Assumed not to happen

� Schemes for protecting against this have been � Schemes for protecting against this have been
developed but are not commonly deployed

� Most likely this happens very rarely

� CAN bus is usually managed by hardware

CAN on ColdFire

� 52233 does not have CAN

� But sibling chips 52231, 53324, and 52235 have “FlexCAN”

� 16 message buffers

� Each can be used for either transmit or receive

� Buffering helps tolerate bursty traffic� Buffering helps tolerate bursty traffic

� Transmission

� Both priority order and queue order are supported

� Receiving

� FlexCAN unit looks for a receive buffer with matching ID

� Some ID bits can be specified as don’t cares

More CAN on CF

� Interrupt sources

� Message buffer

• 32 possibilities – successful transmit / receive from each
of the 16 buffers

� Error

� Bus off – too many errors� Bus off – too many errors

Higher Level Standards

� CAN leaves much unspecified

� How to assign identifiers?

� Endianness of data?

� Standardized higher-level protocols built on CAN:

� CANKingdom

CANOpen� CANOpen

� DeviceNet

� J1939

� Smart Distributed System

� Similar to how

� TCP is built in IP

� HTTP is built in TCP

� Etc.

CANOpen

� Important device types are described by device
profiles

� Digital and analog I/O modules

� Drives

� Sensors

� Etc.� Etc.

� Profiles describe how to access data, parameters,
etc.

CAN Summary

� Not the cheapest network

� E.g., LIN bus is cheaper

� Not suitable for high-bandwidth applications

� E.g. in-car entertainment – streaming audio and video

� MOST – Media Oriented Systems Transport

Design point:� Design point:

� Used where reliable, timely, medium-bandwidth
communication is needed

� Real-time control of engine and other major car systems

