
1

� Today: Wired embedded networks
� Characteristics and requirements

� Some embedded LANs

• SPI

• I2C

• LIN

• Ethernet

� Next lecture: CAN bus

� Then: 802.15.4 – wireless embedded network

Network from a High End Car

Embedded Networking

� In the non-embedded world TCP/IP over Ethernet,
SONET, WiFi, 3G, etc. dominates

� No single embedded network or network protocol
dominates
� Why not?

Embedded vs. TCP/IP

� Many TCP/IP features unnecessary or undesirable in
embedded networks

� In embedded networks…
� Stream abstraction seldom used

• Embedded networks more like UDP than TCP

• Why?

� Reliability of individual packets is important

• As opposed to building reliability with retransmission

� No support for fragmentation / reassembly

• Why?

� No slow-start and other congestion control

• Why?

Which is better?

Latency

Latency

2

Characteristics and Requirements

� Determinism more important than latency

� Above a certain point throughput is irrelevant

� Prioritized network access is useful

� Security important only in some situations

� Resistance to interference may be important

� Reliability is often through redundancy

� Cost is a major factor

� Often master / slave instead of peer to peer

A Few Embedded Networks

� Low-end
� SPI

� I2C

� LIN

� RS-232

� Medium-end
� CAN

� MOST

� USB

� High-end
� Ethernet

� IEEE-1394 (Firewire)

� Myrinet

How do you choose one?

� Does it give the necessary guarantees in…
� Error rate

� Bandwidth

� Delivery time – worst case and average case

� Fault tolerance

� Is it affordable in…
� PCB area

� Pins

� Power and energy

� $$ for wiring, adapter, transceiver, SW licensing

� Software resource consumption: RAM, ROM, CPU

� Software integration and testing effort

Most Basic Embedded Network

� “Bit banged” network:
� Implemented almost entirely in software

� Only HW support is GPIO pins

� Send a bit by writing to output pin

� Receive a bit by polling a digital input pin

� Can implement an existing protocol or roll your own

� Advantages
� Cheap

� Flexible: Support many protocols w/o specific HW support

� Disadvantages

� Lots of development effort

� Imposes severe real-time requirements

� Fast CPU required to support high network speeds

SPI

� Serial Peripheral Interface
� Say “S-P-I” or “spy”

� Characteristics:
� Very local area – designed for communicating with other

chips on the same PCB

• NIC, DAC, flash memory, etc.

� Full-duplex

� Low / medium bandwidth

� Master / slave

� Very many embedded systems use SPI but it is
hidden from outside view

� Originally developed by Motorola
� Now found on many MCUs

SPI Signals

� Four wires:
� SCLK – clock

� SS – slave select

� MOSI – master-out / slave-in

� MISO – master-in / slave-out

� Single master / single slave configuration:

3

Multiple Slaves
� Each slave has its own select line:

� Addressing lots of slaves requires lots of I/O pins on
the master, or else a demultiplexer

CPOL and CPHA

� Clock polarity and clock phase
� Both are 1 bit

� Configurable via device registers

� Determine when:
� First data bit is driven

� Remaining data bits are driven

� Data is sampled

� Details are not that interesting…

� However: All nodes must agree on these or else SPI
doesn’t work

SPI Transfer

1. Master selects a slave

2. Transfer begins at the next clock edge

3. Eight bits transferred in each direction

4. Master deselects the slave

� Typical use of SPI from the master side:
1. Configure the SPI interface

2. Write a byte into the SPI data register

� This implicitly starts a transfer

3. Wait for transfer to finish by checking SPIF flag

4. Read SPI status register and data register

� Contrast this with a bit-banged SPI

More SPI

� SPI is lacking:
� Sophisticated addressing

� Flow control

� Acknowledgements

� Error detection / correction

� Practical consequences:
� Need to build your own higher-level protocols on top of SPI

� SPI is great for streaming data between a master and a few
slaves

� Not so good as number of slaves increases

� Not good when reliability of link might be an issue

I2C

� Say “I-squared C”
� Short for IIC or Inter-IC bus

� Originally developed by Philips for communication
inside a TV set

� Main characteristics:
� Slow – generally limited to 400 Kbps

� Max distance ~10 feet

• Longer at slower speeds

� Supports multiple masters

� Higher-level bus than SPI

I2C Signals and Addressing

� Two wires:
� SCL – serial clock

� SDA – serial data

� These are kept high by default

� Addressing:
� Each slave has a 7-bit address

• 16 addresses are reserved

• One reserved address is for broadcast

• At most 112 slaves can be on a bus

� 10-bit extended addressing schemes exist and are
supported by some I2C implementations

4

I2C Transaction

� Master issues a START condition
� First pulls SDA low, then pulls SCL low

� Master writes an address to the bus
� Plus a bit indicating whether it wants to read or write

� Slaves that don’t match address don’t respond

� A matching slave issues an ACK by pulling down SDA

� Either master or slave transmits one byte
� Receiver issues an ACK

� This step may repeat

� Master issues a STOP condition

� First releases SCL, then releases SDA

� At this point the bus is free for another transaction

Multiple-Master I2C

� One master issues a START
� All other masters are considered slaves for that transaction

� Other masters cannot use the bus until they see a STOP

� What happens if a master misses a START?
� When a master pulls a wire high, it must check that the wire

actually goes high

� If not, then someone else is using it – need to back off until
a STOP is seen

LIN Bus

� Very simple, slow bus for automotive applications
� Master / slave, 20 Kbps maximum

� Single wire

� Can be efficiently implemented in software using existing
UARTs, timers, etc.

• Target cost $1 per node, vs. $2 per node for CAN

Ethernet

� Characteristics
� 1500-byte frames

� Usually full-duplex

� 48-bit addresses

� Much more complicated than SPI, I2C

� Often requires an off-chip Ethernet controller

� Can be used with or without TCP or UDP

� Hubs, switches, etc. support large networks

� Random exponential backoff has bad real-time
properties

� No guarantees are possible under contention

Embedded TCP/IP

� This is increasing in importance
� Remember that TCP/IP can run over any low-level transport

• Even I2C or CAN

� TCP/IP stacks for very small processors exist

� Drawbacks
� TCP/IP is very generic – contains features that aren’t

needed

� TCP/IP targets WANs – makes many design tradeoffs that
can be harmful in embedded situations

� Good usage: Car contains a web server that can be
used to query mileage, etc.

� Bad usage: Engine controller and fuel injector talk
using TCP/IP

Networks on MCF52233

� 3 UARTs

� I2C

� QSPI
� Can queue up 16 transfers – these happen in the

background until queue is empty

� 16 bytes of dedicated command memory

� 32 bytes of dedicated receive buffer

� 32 bytes of dedicated transmit buffer

� Fast Ethernet

5

Summary

� Embedded networks
� Usually packet based

� Usually accessed using low-level interfaces

� SPI, I2C
� Simple and cheap

� Often used for an MCU to talk to non-MCU devices

� CAN
� Real-time, fault tolerant LAN

� Ethernet

� More often used for communication between MCUs

� Subsequent lectures:
� CAN bus

� 802.15.4 – low-power wireless embedded networking

