
� You have a test on Tuesday

� Open book, open note

� No electronics: Phones, computers, calculators, etc.



Last Time

� Testing embedded software

� Kinds of tests

� When to test

� How to test

� Test coverage metrics

� Take home messages� Take home messages

� Run each test as early and as often as time permits

� Make tests cheap to run

� Tests must be aggressive and must thoroughly exercise the 
system

• Test coverage metrics help 

� Integration testing of independently developed components 
is the worst



Today

� Safety critical systems

� What they are

� Notorious examples

� Ways to create them



Definition

� A system is critical when

� Correctness is more important than cost, size, weight, 
power usage, time-to-market, etc.

� Malfunction may result in unacceptable economic loss

� Malfunction may result in unacceptable human loss

� Historical goal of software engineering: Increase 
developer productivity

� New goal: Increase software quality



Examples

� Now

� UAVs fire missiles at people when operators push buttons

� Future

� Autonomous fire control

� Now

� Cars have ABS, traction control, stability control, automatic 
parking, automatic braking during cruise control

� Electric and hybrid vehicles are highly computer-controlled

� Future

� Automatic convoy formation

� Automatic driving?



The Trend

� Humans are relinquishing direct control of more and 
more safety-critical systems

� Humans are flawed (forgetful, inattentive, etc.) but 
basically have good judgment and can grasp the big 
picture

Training helps a lot� Training helps a lot

� When the human is removed from the loop there is 
no oversight

� Things may go badly, quickly

� In general: Larger systems are much worse 
because…

� They are more complicated

� They can do more harm when they go wrong



Critical Systems

� Obviously not just a software problem!

� Other angles that need to be considered

� Faulty specification

� Faulty hardware

� Human error

Malicious users� Malicious users

� Malicious non-users

� Today we focus on software issues



Risk

� Minimizing overall risk is the general strategy

� However:

� Risk is fundamental and unavoidable

� Risk management is about managing tradeoffs

� Risk is a matter of perspective

• Standpoint of individual exposed to hazard• Standpoint of individual exposed to hazard

• Standpoint of society – total risk to general public

• Standpoint of institution responsible for the activity

� Quantifying risk does not ensure safety



Design for Safety

� Order of Precedence:

1. Design for minimum risk

2. Incorporate safety devices

3. Provide warning devices

4. Develop procedures and training



Case Study 1: Missile Timing

� Military aircraft modified from hardware-controlled to 
software-controlled missile launch

� After design, implementation, and testing, plane was 
loaded with a live missile and flown

� The missile engine fired, but the missile never 
released from the aircraftreleased from the aircraft

� A “wild ride” for the test pilot

� Problem: Design did not specify for how long the 
“holdback” should be unlocked

� Programmer made an incorrect assumption

� Missile was not unlocked for long enough to leave the rack

� Oops!



Case Study 2: Missile Choice

� Weapon system supporting both live and practice 
missiles used in field practice

� Operator “fires” a practice missile at a real aircraft 
during an exercise

� Software is programmed to choose the best 
available weapon for a given targetavailable weapon for a given target

� Deselects the practice missile

� Selects a live missile

� Fires

� From the report: “Fortunately the target pilot was 
experienced … but the missile tracked and still 
detonated in close proximity.”



Case Study 3: Therac-25

� Computer-controlled radiation therapy

� Goal: Destroy tumors with minimal impact on 
surrounding tissue

� 11 systems deployed during the 1980s

� Many new features over previous versions

� Lots of software control� Lots of software control

� Increased power

� From a report: “The software control was 
implemented in a DEC model PDP 11 processor 
using a custom executive and assembly language. A 
single programmer implemented virtually all of the 
software. He had an uncertain level of formal 
education and produced very little, if any, 
documentation on the software.”



More Therac-25
� Outcome: Six massive radiation overdoses, five 

deaths

� Compounding the problem: Company didn’t believe 
software could be at fault

� “Records show that software was deliberately left 
out of an otherwise thorough safety analysis 
performed in 1983 which used fault-tree methods. performed in 1983 which used fault-tree methods. 
Software was excluded because ‘software errors’ 
have been eliminated because of extensive 
simulation and field testing. Also, software does not 
degrade due to wear, fatigue or reproduction 
process. Other types of software failures were 
assigned very low failure rates with no apparent 
justification.”



Therac-25 Facts

� Hardware interlocks were replaced by software 
without any supporting safety analysis

� There was no effective reporting mechanism for field 
problems involving software

� Software design practices (contributing to the 
accidents) did not include basic, shared-data and accidents) did not include basic, shared-data and 
contention management mechanisms normal in 
multi-tasking software

� The design was unnecessarily complex for the 
problem. For instance, there were more parallel 
tasks than necessary. This was a direct cause of 
some of the accidents



Specific Therac-25 Bugs

� “Equipment control task did not properly 
synchronize with the operator interface task, so that 
race conditions occurred if the operator changed the 
setup too quickly. This was evidently missed during 
testing, since it took some practice before operators 
were able to work quickly enough for the problem to were able to work quickly enough for the problem to 
occur.”

� “The software set a flag variable by incrementing it. 
Occasionally an arithmetic overflow occurred, 
causing the software to bypass safety checks.”



Two More Examples

� Ariane 5 (1996)

� Reused Ariane 4 software

� Higher horizontal velocity of Ariane 5 caused a 16-bit 
variable to overflow

� Resulting chain of failures necessitated destroying the 
rocketrocket

� Mars Pathfinder (1997)

� “…very infrequently it was possible for an interrupt to occur 
that caused the (medium priority) communications task to 
be scheduled during the short interval while the (high 
priority) information bus thread was blocked waiting for the 
(low priority) meteorological data thread.”

� Classic priority inversion

� We’ll cover these (and how to avoid them) later



Software V&V

� Verification and validation – making sure that 
software does the right thing

� Obvious problem – figuring out what “the right thing” is

� V&V typically uses 40-60% of total effort

� Parts of the solution:

� Development process

� Specification

� Testing

� Inspection

� Fault-tree analysis

� Language choice

� Software techniques

� Static analysis / formal verification



Fault Tree Analysis

� Fault: Abnormal or undesirable system state

� Failure: Loss of functionality

� Primary failure: Failing element operating within its 
specifications

� Secondary failure: Failing element operating outside � Secondary failure: Failing element operating outside 
of its specifications

� What was the primary failure for the Challenger?

� Fault tree idea:

� Connect faults and failures using logical operations in order 
to understand the consequences of faults individually and 
in combination



Fault Tree Example



Language Choice

� We looked at MISRA C

� A better example is SPARK Ada

� Pervasive support for static analysis

• All rule violations statically detectable

� No implementation-defined behavior

Tons of tool support� Tons of tool support

� “SPARK code was found to have only 10% of the residual 
errors of full Ada and Ada was found to have only 10% of 
the residual errors of C”



Software Safety Techniques

� Interlocks

� Important actions require signals from two or more 
independent sources

� Firewalls

� Hardware / software protection boundary between critical 
and non-critical functionalityand non-critical functionality

� Example software firewalls:

• Address spaces

• CPU reservations

• Module tainting

� Redundancy

� Correct result is computed by having multiple processes / 
processors vote



Static Analysis / Verification

� Goal: Rule out classes of errors across all possible 
executions

� Potentially much faster than testing

� Potentially more thorough than testing

� Stack depth analysis is one example – can “prove” that a 
system is invulnerable to stack overflowsystem is invulnerable to stack overflow

� Other examples – absence of:

� Array / pointer misuse

� Integer and FP overflow

� Use of uninitialized data

� Numerical errors

� Exceptions

� Deviation from specification



Static Analysis Properties

� In general static analysis:

� Finds many trivial problems

� Does not find the most important problems

� Has a hard time finding the deepest problems

� Has high computational complexity

� Even so:� Even so:

� My opinion (and lots of other people’s) is that static analysis 
is the only way forward for creating large safety-critical 
systems



Example: PolySpace Verifier

� Pure static analysis

� No testcases, no execution

� Analyzes Ada, C, C++

� Anecdotal evidence suggests that Ada version is by far the 
best

� Deep analysis of large C, C++ programs is still barely � Deep analysis of large C, C++ programs is still barely 
feasible

� Found the Ariane bug

� (After the fact)

� Lots of big customers



Summary

� Safety-critical software is extremely hard to create

� Can’t be done by organizations that do not take this very 
seriously

� No shortage of horror stories

� Risk mitigation requires many different techniques

� Software-based� Software-based

� Hardware-based

� Process-based

� Etc.


