
Stuff
� Lab is due by 5pm today

� Exam 1 next Tues

� I’ll be out of town so Zhe will give the exam

� New lab and HW assignments after the exam� New lab and HW assignments after the exam



SKIPPED Power Lecture

� Software perspective on power and energy 
management

� Mechanisms are provided by the HW people

� Frequency scaling

� Voltage scaling

Sleep modes� Sleep modes

� Analysis of HW + workload can give us ballpark 
estimate of whether there is a good match

� Policies are up to software

� But it’s often difficult to balance power, performance, and 
users’ convenience



Today

� Testing embedded software

� Kinds of tests

� When to test

� How to test

� Test coverage



� Fact: Most multithreaded Java programs run all of 
their test cases perfectly well when all locking is 
removed

� What does this mean?



Testing

� Testing is the fundamental way that reliable 
embedded software is created

� This is why we can build safety-critical applications using 
buggy compilers!

� However, good testing techniques are neither easy 
or intuitiveor intuitive

� Lots of basic questions:

� When to test?

� Who tests?

� Where do test cases come from?

� How to evaluate the result of a test?

� How much testing is enough?



The Testing Mindset

� Creating good tests for your own software is hard

� At least three reasons for this

� Microsoft (and other companies) separate testers 
from developers

� Different skill sets

Good testers are adversarial� Good testers are adversarial

� Goal is to break the software

� This can lead to strained relations between developers and 
testers

� The best developers truly attempt to break their own 
code



Kinds of Tests

� Functionality – testing functional behavior

� Interfaces – testing interaction with other systems

� Security – test for robustness to intrusion

� Standards – check for compliance

� Regression� Regression

� Testing whether everything works after the system has been 
changed

� Test cases derived from prior failures

� Resources – measuring required resources such as 
CPU time, memory, network bandwidth

� Load and stress – trying to overload the system



Test Levels

� Hardware unit test

� Hardware integration test

� Software unit test

� Software integration test

� HW/SW integration test� HW/SW integration test

� System test

� Acceptance test

� Field test



Where do tests come from?

� Use cases

� Developer intuition

� Previous failures

� Boundary cases from specification

� Stress tests� Stress tests

� Random inputs

� Directed random / analysis-driven inputs



When to Test

� Every combination of kind of test and test level 
should be run as early as is feasible

� Basic fact: Cost to fix a bug increases greatly as 
development progresses



Testing by Developers

� Why?

� Defects cheaper to fix when found earlier

� High-quality parts make integration possible

� Defects found late are hard to map back to the source code

� Some kinds of tests are only possible at the unit level

� Developers understand the implementation, which can lead � Developers understand the implementation, which can lead 
to better test cases

� Quality cannot be added at the end of development

� Has to be there from the start



Unit Testing

Driver
T
e
s
t 

H
a
rn

e
s
s

Stubs

Unit under test

T
e
s
t 

H
a
rn

e
s
s



Integration Testing Strategies

� Bottom-up

� Start with low-level modules with few dependencies

� Exercise them using drivers

� Top-down

� Overall control structure drives tests

Stubs provided for nonexistant modules� Stubs provided for nonexistant modules

� “Look and feel” of the system established early

� Big-bang

� Only works for small systems

� Useful for tightly coupled systems where top-down and 
bottom-up are difficult



Design for Test

� Term most often used in context of hardware

� Also applies to software

� How to do this?

� Lots of assertions for preconditions and postconditions

� Implement self-tests

Provide test scaffolding along with code� Provide test scaffolding along with code

� Expose all interfaces for testing

� Examples – how would you design these for test?

� Code to set PLL

� Code responding to an external interrupt source



Test Oracles

� Test oracle – Code that tells us if the system is 
responding properly to tests

� Some oracles are easy

� Not working if the software crashes

� Not working if the software stops responding normally to 
inputsinputs

� Not working if an assertion is violated

� Some oracles are very difficult

� E.g. is the aircraft responding properly to crosswind?

� Manual interpretation of the specification and test results 
typically required



Test Coverage

� Coverage metrics try to answer the question: How 
can we know when to stop testing?

� Example metrics:

� Function coverage – are all functions executed?

� Statement coverage – are all statements executed?

Branch coverage – is every possible decision executed at � Branch coverage – is every possible decision executed at 
every branch?

� Path coverage – is every path through the code executed?

� Value coverage – is the full range of every variable covered?

� Mutation coverage – are all variants of the program 
covered?

� Exception coverage – are all exceptions signaled?

� In most cases goal is 100% coverage



Evaluating Coverage Metrics

� Coverage metric must be understood by the user

� Near-complete coverage must be achievable

� Exceptions require fixing or manual review

� Some action should be taken upon reaching 100% 
coverage



Coverage of Concurrent SW

� Problem:

� Traditional test coverage metrics are in terms of sequential 
software

� Embedded software is concurrent

� What are some plausible metrics for concurrent 
software?software?

� Interrupt nesting coverage

� Interrupt preemption coverage

� Thread preemption coverage

� Synchronization coverage

• Each lock “does interesting things”



Stress Testing

� Test system at the limits of (and outside) its load 
parameters

� Intuition: This exposes different kinds of problems than 
regular test cases do

� Examples – how would you stress test:

� Embedded web server� Embedded web server

� An RTOS

� A cell phone

� Tricky problem: Thinking of as many sources of 
stress as possible



Stress Testing for Interrupts

� What bugs are we trying to find?

� How to do it?

� What if data comes along with the interrupt?

� How to tell when we’re done?



Summary

� Embedded software is only as good as its test cases

� You should assume any conditions not tested will fail

� … because they will

� Developers perform early testing of components

� Requires adversarial mindset

Requires wishful thinking to be ruthlessly suppressed� Requires wishful thinking to be ruthlessly suppressed

� Integration cannot possibly succeed without reliable 
components

� Summary:

� Test early

� Test often

� Test creatively


