
� Please do not handin a .doc file, a .zip file, a .tar file,
or anything else

� Hand in the files that are requested and only the files that
are requested

� No executables!

� Lecture on Thurs is canceled

size= 64 correct= 0
size= 73 correct= 0
size= 107 correct= 1
size= 107 correct= 0
size= 108 correct= 0
size= 108 correct= 1
size= 111 correct= 1
size= 113 correct= 1
size= 113 correct= 0
size= 130 correct= 1
size= 131 correct= 0
size= 132 correct= 1
size= 133 correct= 0
size= 148 correct= 0
size= 148 correct= 0

Shuying Liang

size= 148 correct= 0
size= 148 correct= 0
size= 172 correct= 0
size= 172 correct= 0
size= 179 correct= 0
size= 209 correct= 0
size= 231 correct= 0
size= 251 correct= 0
size= 272 correct= 0
size= 272 correct= 0
size= 318 correct= 0
size= 357 correct= 0
size= 696 correct= 0
size= 962 correct= 0

Lab 2 discussion

Last Time

� Debugging

� It’s a science – use experiments to refine hypotheses about
bugs

� It’s an art – creating effective hypotheses and experiments
and trying them in the right order requires great intuition

Today

� Advanced threads

� Thread example

� Implementation review

� Design issues

� Performance metrics

� Thread variations� Thread variations

� Example code from Ethernut RTOS

What’s an RTOS?

� Real-Time Operating System

� Implication is that it can be used to build real-time systems

� Provides:

� Threads

� Real-time scheduler

Synchronization primitives� Synchronization primitives

� Boot code

� Device drivers

� Might provide:

� Memory protection

� Virtual memory

� Is WinCE an RTOS? Embedded Linux?

Thread Example

� We want code to do this:

1. Turn on the wireless network at time t0

2. Wait until time is t0 + tawake

3. If communication has not completed, wait until it has
completed or else time is t0 + tawake + twait_max

4. Turn off radio4. Turn off radio

5. Go back to step 1

Threaded vs. Non-Threaded
enum { ON, WAITING, OFF } state;

void radio_wake_event_handler () {

switch (state) {

case ON:

if (expired(&timer)) {

set_timer (&timer, T_SLEEP);

if (!communication_complete) {

state = WAITING;

set_timer (&wait_timer,

void radio_wake_thread () {

while (1) {

radio_on();

timer_set (&timer, T_AWAKE);

wait_for_timer (&timer);

T_MAX_WAIT);

} else {

turn_off_radio();

state = OFF;

}}

break;

case WAITING:

if (communication_complete() ||

timer_expired (&wait_timer)) {

state = OFF;

radio_off();

}

break;

...

timer_set (&timer, T_SLEEP);

if (!communication_complete()) {

timer_set (&wait_timer, T_WAIT_MAX);

wait_cond (communication_complete() ||

timer_expired (&wait_timer));

}

radio_off();

wait_for_timer (&timer);

}

}

Blocking

� Blocking

� Ability for a thread to sleep awaiting some event

• Like what?

� Fundamental service provided by an RTOS

How does blocking work? � How does blocking work?

1. Thread calls a function provided by the RTOS

2. RTOS decides to block the thread

3. RTOS saves the thread’s context

4. RTOS makes a scheduling decision

5. RTOS loads the context of a different thread and runs it

� When does a blocked thread wake up?

More Blocking

� When does a blocked thread wake up?

� When some predetermined condition becomes true

� Disk block available, network communication needed, timer
expired, etc.

� Often interrupt handlers unblock threads

� Why is blocking good?

� Preserves the contents of the stack and registers

� Upon waking up, thread can just continue to execute

� Can you get by without blocking?

� Yes – but code tends to become very cluttered with state
machines

Preemption

� When does the RTOS make scheduling decisions?

� Non-preemptive RTOS: Only when a thread blocks or exits

� Preemptive RTOS: every time a thread wakes up or changes
priority

� Advantage of preemption: Threads can respond � Advantage of preemption: Threads can respond
more rapidly to events

� No need to wait for whatever thread is running to reach a
blocking point

� Even preemptive threads sometimes have to wait

� For example when interrupts are disabled, preemption is
disabled too

More Preemption

� Preemption and blocking are orthogonal

� No blocking, no preemption – main loop style

� Blocking, no preemption – non-preemptive RTOS

• Also MacOS < 10

� No blocking, preemption – interrupt-driven system

� Blocking, preemption – preemptive RTOS� Blocking, preemption – preemptive RTOS

Thread Implementation

� TCB – thread control block

� One per thread

� A struct that stores:

• Saved registers including PC and SP

• Current thread state

• All-threads link field• All-threads link field

• Ready-list / block-list link field

� Stack

� Dedicated block of RAM per thread

Thread States

� Thread invariants

� At most one running thread

• If there’s an idle thread then exactly one running thread

� Every thread is on the “all thread” list

� State-based:

• Running thread → Not on any list

• Blocked thread → On one blocked list

• Active thread → On one ready list

Ethernut TCB

struct _NUTTHREADINFO {
NUTTHREADINFO *volatile td_next; /* Linked list of all threads. */
NUTTHREADINFO *td_qnxt; /* Linked list of all queued thread. */
u_char td_name[9]; /* Name of this thread. */
u_char td_state; /* Operating state. One of TDS_ */
uptr_t td_sp; /* Stack pointer. */
u_char td_priority; /* Priority level. 0 is highest priority. */
u_char *td_memory; /* Pointer to heap memory used for stack. */u_char *td_memory; /* Pointer to heap memory used for stack. */
HANDLE td_timer; /* Event timer. */
HANDLE td_queue; /* Root entry of the waiting queue. */

};

#define TDS_TERM 0 /* Thread has exited. */
#define TDS_RUNNING 1 /* Thread is running. */
#define TDS_READY 2 /* Thread is ready to run. */
#define TDS_SLEEP 3 /* Thread is sleeping. */

Scheduler

� Makes a decision when:

� Thread blocks

� Thread wakes up (or is newly created)

� Time slice expires

� Thread priority changes

� How does the scheduler make these decisions?� How does the scheduler make these decisions?

� Typical RTOS: Priorities

� Typical GPOS: Complicated algorithm

� There are many other possibilities

u_char NutThreadSetPriority(u_char level) {
u_char last = runningThread->td_priority;
/* Remove the thread from the run queue and re-insert it with a new
* priority, if this new priority level is below 255. A priotity of
* 255 will kill the thread. */

NutThreadRemoveQueue(runningThread, &runQueue);
runningThread->td_priority = level;
if (level < 255)

NutThreadAddPriQueue(runningThread, (NUTTHREADINFO **) & runQueue);
else

NutThreadKill();

/* Are we still on top of the queue? If yes, then change our status
* back to running, otherwise do a context switch. */

if (runningThread == runQueue) {
runningThread->td_state = TDS_RUNNING;

} else {
runningThread->td_state = TDS_READY;
NutEnterCritical();
NutThreadSwitch();
NutExitCritical();

}
return last;

}

Dispatcher

� Low-level part of the RTOS

� Basic functionality:

� Save state of currently running thread

• Important not to destroy register values in the process!

� Restore state of newly running thread

� What if there’s no new thread to run?

� Usually there’s an idle thread that is always ready to run

� In modern systems the idle thread probably just puts the
processor to sleep

Ethernut ARM Context

typedef struct {

u_long csf_cpsr;

u_long csf_r4;

u_long csf_r5;

u_long csf_r6;

u_long csf_r7;u_long csf_r7;

u_long csf_r8;

u_long csf_r9;

u_long csf_r10;

u_long csf_r11; /* AKA fp */

u_long csf_lr;

} SWITCHFRAME;

void NutThreadSwitch(void) attribute ((naked))
{

/* Save CPU context. */
asm volatile (/* */

"stmfd sp!, {r4-r11, lr}" /* Save registers. */
"mrs r4, cpsr" /* Save status. */
"stmfd sp!, {r4}" /* */
"str sp, %0" /* Save stack pointer. */
::"m" (runningThread->td_sp));

/* Select thread on top of the run queue. */
runningThread = runQueue;
runningThread->td_state = TDS_RUNNING;runningThread->td_state = TDS_RUNNING;

/* Restore context. */
__asm__ __volatile__(/* */

"@ Load context" /* */
"ldr sp, %0" /* Restore stack pointer. */
"ldmfd sp!, {r4}" /* Get saved status... */
"bic r4, r4, #0xC0" /* ...enable interrupts */
"msr spsr, r4" /* ...and save in spsr. */
"ldmfd sp!, {r4-r11, lr}" /* Restore registers. */
"movs pc, lr" /* Restore status and return. */
::"m"(runningThread->td_sp));

}

Thread Correctness

� Threaded software can be hard to understand

� Like interrupts, threads add interleavings

� To stop the scheduler from interleaving two threads:
use proper locking

� Any time two threads share a data structure, access to the
data structure needs to be protected by a lockdata structure needs to be protected by a lock

Thread Interaction Primitives

� Locks (a.k.a. mutexes)

� Allow one thread at a time into critical section

� Block other threads until exit

� FIFO queue (a.k.a. mailbox)

� Threads read from and write to queue

Read from empty queue blocks� Read from empty queue blocks

� Write to empty queue blocks

� Message passing

� Sending thread blocks until receiving thread has the
message

� Similar to mailbox with queue size = 0

Mixing Threads and Interrupts

� Problem:

� Thread locks do not protect against interrupts

� Solution 1:

� Mutex disables interrupts as part of taking a lock

� What happens when a thread blocks inside a mutex?

Solution 2:� Solution 2:

� Up to the user to disable interrupts in addition to taking a
mutex

Thread Design Issues 1

� Static threads:

� All threads created at compile time

� Dynamic threads:

� System supports a “create new thread” and “exit thread”
calls

� Tradeoffs – dynamic threads are:� Tradeoffs – dynamic threads are:

� More flexible and user-friendly

� Not possible to implement without a heap

� A tiny bit less efficient

� Much harder to verify / validate

Thread Design Issues 2

� Can threads be asynchronously killed?

� Alternative: Threads must exit on their own

� Tradeoffs – asynchronous termination:

� Is sometimes very convenient

� Raises a difficult question – What if killed thread is in a
critical section?critical section?

• Kill it anyway → Data structure corruption

• Wait for it to exit → Defeats the purpose of immediate
termination

� Why do Windows and Linux processes not have this
problem?

Thread Design Issues 3

� Are multiple threads at the same priority permitted?

� Tradeoffs – multiple same-priority threads:

� Can be convenient

� Makes data structures a bit more complex and less efficient

� Requires a secondary scheduling policy

• Round-robin• Round-robin

• FIFO

Thread Design Issue 4

� How to determine thread stack sizes?

� Use same methods as for non-threaded systems

� Need to know how interrupts and stacks interact

� Possibilities

1. Interrupts use the current thread stack

Interrupts use a special system stack2. Interrupts use a special system stack

Thread Performance Metrics

� Thread dispatch latency

� Average care and worst case

� System call latency

� Average case and worst case

� Context switch overhead

� RAM overhead

� More or less reduces to heap manager overhead

Thread Variation 1

� Protothreads are stackless

� Can block, but…

� Blocking is cooperative

� All stack variables are lost across a blocking point

� Blocking can only occur in the protothread’s root function

Tradeoffs – protothreads are another design point � Tradeoffs – protothreads are another design point
between threads and events

Thread Variation 2

� Preemption thresholds

� Every thread has two priorities

• P1 – regular priority, used to decide when the thread
runs

• P2 – preemption threshold, used to decide whether
another thread can preempt currently running threadanother thread can preempt currently running thread

� If P1 == P2 for all threads, degenerates to preemptive
multithreading

� If P2 == max priority, degenerates to non-preemptive
scheduling

� Key benefits:

� Threads that are mutually nonpreemptive can share a stack

� Reduces number of context switches

Thread Pros

� Blocking can lead to clearer software

� No need to manually save state

� Reduces number of ad-hoc state machines

� Preemptive scheduling can lead to rapid response
times

Only in carefully designed systems� Only in carefully designed systems

� Threads compose multiple activities naturally

� As opposed to cyclic executives

Thread Cons

� Correctness

� Empirically, people cannot create correct multithreaded
software

� Race conditions

� Deadlocks

� Tough to debug� Tough to debug

� Performance

� Stacks require prohibitive RAM on the smallest systems

� Context switch overhead can hurt – might end up putting
time critical code into interrupts

Thread Rules

� Always write code that is free of data races

� A data race is any variable that is…

� Written by 1 or more threads

� Shared between 2 or more threads

� Not consistently protected by a lock

� For every variable in your code you should be able
to say why there is not a data race on it

Thread Rules

� You must be clear about

� Your locking strategy

� Your call graph

� Where pointers might be pointing

Would a program be free of data races if you � Would a program be free of data races if you
disabled interrupts before accessing each shared
variable, and enabled afterwards?

� Would it be correct?

� How long do you hold a lock in general?

Thread Rules

� Protect data any time its invariants are broken

� This means you have to know what the invariants
are!

� Examples?

Thread Rules

� Always either:

� Acquire only one lock at a time

• Usually not practical

� Assign a total ordering to locks and acquire them in that
order

• Requires coordination across developers• Requires coordination across developers

Summary

� Threads have clear advantages for large systems

� Blocking reduces the need to build state machines

� Threads simplify composing a system from parts

� Threads have clear disadvantages

� RAM overhead, for small systems

Correctness issues� Correctness issues

