
Homework 2

� Questions about it?

Last Time

� To write C and C++ programs that work, you
have to understand a lot of subtle issues

� Signed / unsigned rules

� Sequence points

� Implementation defined behaviorImplementation defined behavior

� Unspecified behavior

� Undefined behavior

� The C99 Standard is a free download

� Google for n1124.pdf

Today

� Volatile

� How to use it

� How not to use it

5

� Example:

� This AVR has no hardware multiply unit

� Let’s measure the speed of software multiply

� Solution using Timer 1:

� Set timer to an appropriate rate� Set timer to an appropriate rate

� Read TCNT1

� Do a multiply

� Read TCNT1 again

� Subtract first reading from second

#define TCNT1 (*(uint16_t *)(0x4C))

signed char a, b, c;

uint16_t time_mul (void)

{

uint16_t first = TCNT1;

c = a * b;

uint16_t second = TCNT1;

return second - first;

}

$ avr-gcc -Os -S -o - reg1.c

time_mul:

lds r22,a

lds r24,b

rcall __mulqi3

sts c,r24

ldi r24,lo8(0)

ldi r25,hi8(0)

ret

#define TCNT1 (*(volatile uint16_t *)(0x4C))

signed char a, b, c;

uint16_t time_mul (void)

{

uint16_t first = TCNT1;

c = a * b;

uint16_t second = TCNT1;

return second - first;

}

avr-gcc -Os -S -o - reg2.c

time_mul:

in r18,0x2c

in r19,0x2d

lds r22,a

lds r24,b

rcall __mulqi3rcall __mulqi3

sts c,r24

in r24,0x2c

in r25,0x2d

sub r24,r18

sbc r25,r19

ret

In a header file…

// Timer/Counter 1

#define TCNT1 (*(volatile uint16_t *)(0x4C))

// T/C 1 Input Capture Register

#define ICR1 (*(volatile uint16_t *)(0x46))#define ICR1 (*(volatile uint16_t *)(0x46))

#define ICR1L (*(volatile uint8_t *) (0x46))

#define ICR1H (*(volatile uint8_t *) (0x47))

// T/C 1 Output Compare Register

#define OCR1B (*(volatile uint16_t *)(0x48))

ColdFire Example

� C code you might write:
/* Enable signal as GPIO */

void make_pin0_gpio (void) {

MCF_GPIO_PTCPAR = MCF_GPIO_PTCPAR_DTIN0_GPIO;

}

� Relevant reprocessor definitions:
typedef volatile uint8 vuint8;

#define MCF_GPIO_PTCPAR \

(*(vuint8 *)(&__IPSBAR[0x10006F]))

#define MCF_GPIO_PTCPAR_DTIN0_GPIO (0)

ColdFire Example

� After the C processor has run, the code is:

void make_pin0_gpio (void) {

(*(vuint8 *)(&__IPSBAR[0x10006F])) = (0);

}

� So, this is the code the CodeWarrior compiler
actually sees and compilesactually sees and compiles

� Note: vuint8 * is pointer-to-volatile, not
volatile-pointer

� The distinction is crucial

� Hardware register access is typically done
using pointers-to-volatile

Compiler Output

_make_pin0_gpio:

0x00000000 link a6, #0

0x00000004 moveq #0, d0

0x00000006 move.b d0, ___IPSBAR+1048687

0x0000000C unlk a60x0000000C unlk a6

0x0000000E rts

Another ColdFire Example

� C code you might write:

/* Enable signal as GPIO */

void make_pin0_gpio (void) {

MCF_GPIO_PTCPAR |= MCF_GPIO_PTCPAR_DTIN0_GPIO;

}

� Expands out to:

void make_pin0_gpio_bogus (void) {

(*(vuint8 *)(&__IPSBAR[0x10006F])) |= (0) ;

}

Another ColdFire Example

_make_pin0_gpio_bogus:

0x00000000 link a6, #0

0x00000004 move.b ___IPSBAR+1048687, d0

0x0000000A unlk a6

0x0000000C rts 0x0000000C rts

0x0000000E nop

� What happened?

� Is the code what we wanted?

� Is the compiler correct?

Device Registers ≠ RAM

� Each read may return a different value

� Free-running timer

� Writes may be ignored or result in undefined
behavior

Read-only registers � Read-only registers

� Reads can be writes

� HCS12 interrupt flags cleared by writing 1

� Reads and writes can be side effecting

� Launch a missile, raise the control rods, …

� RAM-like semantics are ingrained in language and
compiler design

� Useless loads eliminated

� Redundant loads avoided by caching values in registers

� Operations with constant arguments evaluated at compile
timetime

� Similar transformations for stores

� Memory behavior of optimized executable may be
very different from source code

� Basic problem: Optimizations are in tension with
HW register accesses

� Improving the optimizer breaks programs that
previously worked

� Lots of latent errors in real embedded programs

Problems not seen because compiler aren’t smart enough� Problems not seen because compiler aren’t smart enough

� Today we look at creating embedded systems that
can’t be broken by any future optimizer

� In early C there was no good solution

“At least one version of the UNIX Portable C
Compiler (PCC) had a special hack to recognize
constructs like

((struct xxx *)0177450)->zzz

as being potential references to I/O space (device as being potential references to I/O space (device
registers) and would avoid excessive optimization
involving such expressions”

� ANSI C (a.k.a. C89) added volatile

� Informal definition of volatile

� Every read/write to a volatile variable that would be
performed by a C interpreter must result in a load/store in
the executable code, in the same order

� Accesses shouldn’t be added or removed

� Accesses shouldn’t be reordered (much)

� Volatile is a type qualifier

� Any type can be qualified

� New types can be built from qualified types

� Rules for volatile are similar to, but not the same
as, constas, const

� Every level of indirection can be independently
qualified:

int *p;

volatile int *p_to_vol;

int *volatile vol_p;

volatile int *volatile vol_p_to_vol;

� Making a struct or union volatile is same as
making all members volatile

� Volatile bitfields are a little tricky

� Does this make sense?

const volatile int *p_to_const_vol;

� Yes: This is the correct declaration for a read-only
timer register

Uses for Volatile

� Volatile use 1: HW register accesses

� Volatile use 2: Data shared between
interrupts and main()

� Volatile use 3: Data shared between threads

� Volatile use 4: Delay loops

� Now: Eight ways to create broken
embedded code using volatile

#1: Not Enough Volatile

int done;

__attribute((signal)) void __vector_4 (void)

{

done = 1;done = 1;

}

void wait_for_done (void) {

while (!done) ;

}

[regehr@babel ~]$ avr-gcc -Os wait.c -S -o -

__vector_4:

push r0

in r0,__SREG__

push r0

push r24

ldi r24,lo8(1)

sts done,r24

pop r24

pop r0

out __SREG__,r0

Key property:
Visibility

out __SREG__,r0

pop r0

reti

wait_for_done:

lds r24,done

.L3:

tst r24

breq .L3

ret

wait_for_done:

.L3:

lds r24,done

tst r24

breq .L3

ret

Make done volatile

#2: Too Much Volatile

� Some embedded developers make almost
all globals volatile

� Volatile is not a substitute for thinking

� Can seriously impact application
performanceperformance

� Hard to get the performance back since slow
code is scattered everywhere

#3: Misplaced Qualifier

int *volatile REG = 0xfeed;

*REG = new_val;

� Oops!

� Typedefs are helpful:� Typedefs are helpful:

typedef volatile int vint;

vint *REG = 0xfeed;

#4: Inconsistent
Qualification

� In Linux 2.2.26

� arch/i386/kernel/smp.c:125

volatile unsigned long ipi_count;

� include/asm-i386/smp.h:178

extern unsigned long ipi_count;

� 2.3.x has similar problems

� Modern compilers will catch this

� Typecasts are another way to get
inconsistent qualification

� Don’t ignore compiler warnings about this!

#5: Ordering with Non-
Volatile

volatile int ready;

int message[100];

void foo (int i)

{

message[i/10] = 42;

ready = 1;

}

$ gcc-4.3 -O3 barrier1.c -S -o -

foo:

movl 4(%esp), %ecx

movl $1717986919, %edx

movl $1, ready

movl %ecx, %eax

imull %edximull %edx

sarl $31, %ecx

sarl $2, %edx

subl %ecx, %edx

movl $42, message(,%edx,4)

ret

What happened?

� Non-volatile accesses can move around
volatile accesses

� Volatile accesses cannot move around
each other

� Unless there are no intervening sequence � Unless there are no intervening sequence
points

� Solution 1: Make all shared variables
volatile

� Solution 2: Use a “compiler barrier”

Compiler Barrier

� Tells the compiler:

� No code motion past the barrier in either
direction

� Store all register values to RAM before the barrier

� Reload values from RAM into registers after the
barrier

� Reload values from RAM into registers after the
barrier

GCC Barrier

volatile int ready;

int message[100];

void foo (int i)

{

message[i/10] = 42;

asm volatile ("" : : : "memory");

ready = 1;

}

$ gcc-4.3 -O3 barrier2.c -S -o -

foo:

movl 4(%esp), %ecx

movl $1717986919, %edx

movl %ecx, %eax

imull %edx

sarl $31, %ecxsarl $31, %ecx

sarl $2, %edx

subl %ecx, %edx

movl $42, message(,%edx,4)

movl $1, ready

ret

� Compiler barriers are analogous to HW memory
system barriers

� Not all compilers support barriers

� CodeWarrior for ColdFire does not, unfortunately!

� If not, inserting a call to an external function may work

� Good RTOS lock/unlock functions are compiler � Good RTOS lock/unlock functions are compiler
barriers

� Often, only because they are not inlined

� Problematic as compilers get smarter

Old Locks in TinyOS

char __nesc_atomic_start (void)

{

char result = SREG;

__nesc_disable_interrupt();

return result;

}

void __nesc_atomic_end (char save)

{

SREG = save;

}

New Locks in TinyOS
char__nesc_atomic_start(void)

{

char result = SREG;

__nesc_disable_interrupt();

asm volatile("" : : : "memory");

return result;return result;

}

void __nesc_atomic_end(char save)

{

asm volatile("" : : : "memory");

SREG = save;

}

#6: Confuse Volatile and Atomic

� Accesses to volatile variables are not guaranteed
to be atomic

� C doesn’t guarantee atomicity of any access

� However, char-, short-, and int-sized accesses are often
atomic

� If you want atomicity, use a lock!

#7: Use Volatile on Modern
Machines

� Volatile does not cause the compiler to emit
memory fences or barriers

� Consequently: Volatile is useless on out-of-order
processorsprocessors

� Volatile does not ensure visibility across a
multiprocessor

� Consequently: Volatile is useless on multicores

� Solution:

� You must use a good lock implementation

� These contain sufficient barriers make race-free programs
execute in a sequentially consistent manner

� In a well-synchronized program volatile just slows
it down and hides real problemsit down and hides real problems

� Best not to hack your own synchronization
primitives

#8: Assume the Compiler is
Right

� Volatiles are frequently miscompiled

volatile int x;

void foo (void) {

x = x;x = x;

}

$ msp430-gcc -O vol.c -S -o -

foo:

ret

What does volatile really mean?

� We have to ask the standard

� Section 6.7.3 the C99 standard contains most
of the details

� “An object that has volatile-qualified type may be
modified in ways unknown to the implementation or
have other unknown side effects.” have other unknown side effects.”

More Standard

� “What constitutes an access to an object
that has volatile-qualified type is
implementation-defined.”

� What??

� Apparently this is designed to cover the fact � Apparently this is designed to cover the fact
that some platforms have a minimum
memory access width

Volatile Summary 1

� Volatile can be good

� You need it for:

� Accessing device registers

� Communicating with interrupts

� It’s usually not useful for anything else� It’s usually not useful for anything else

� Be careful about the compiler

� CodeWarrior for ColdFire has volatile bugs

� I’ve reported all of them that I’m aware of…

Volatile Summary 2

� Locks with compiler and HW barriers give atomicity
and visibility

� Volatile does not

� No atomicity

� No visibility on advanced HWNo visibility on advanced HW

� If you have good locks, use them instead of volatile
for shared data

