
Important From Last Time

� Embedded C

� Pros and cons

� Macros and how to avoid them

� Intrinsics

� Interrupt syntax� Interrupt syntax

� Inline assembly

Today

� Advanced C

� What C programs mean

� How to create C programs that mean
nothing

� The point: Embedded systems need to work
all the time

� You cannot create systems that really work
unless you understand your programming
language and your tools

� This is a major theme for the rest of this class

Is the assembly code right?
int my_loop (int base) {

int index, count = 0;

for (index = base;

index < (base+10);

index++) index++)

count++;

return count;

}

my_loop:

movl $10, %eax

ret

Is the assembly code right?
int my_compare (void) {

signed char a = 1;

unsigned char b = -1;

return (a > b);

} }

my_compare:

movl $1, %eax

ret

Which compiler is right?
int another_compare (void) {

return -1 < (unsigned short)1;

}

another_compare:

movl $1, %eax

ret

another_compare:

mov #llo(0), r15

ret

gcc 4.3.2 for x86:

gcc 3.2.3 for msp430:

$ gcc foo.c –o foo

$./foo

Segmentation fault (core dumped)

$ gcc –O2 foo.c –o foo

$./foo

Hello, world.

Is it OK for the optimizer to turn a broken
program into a working one?

What about the other way around– is it OK for
the optimizer to break a working program?

What mathematical function is equivalent to this
C function?

unsigned foo (unsigned a, unsigned b) {

return a+b;

}

igned)sizeof(uns * CHAR_BIT2mod)(),(babafoo +=

How about this function?

int foo (int a, int b) {

return a+b;

}



 ≤+≤+

=

otherwise undefined

INT_MAXINT_MIN if
),(

b)(ab a
bafoo

� What mathematical function is equivalent to
Internet Explorer 7?

What does each
of these mean?

� x = y = z;

� v++

� v + v++

� *p + (i=1)� *p + (i=1)

� (x=0) + (x=0)

� i = i + 1;

� i = (i = i + 1);

Point of all this?

� Arithmetic, logical, and comparison
operators are not equivalent to their
mathematical counterparts

� Expression evaluation is nontrivial

� Other parts of the C language have similar � Other parts of the C language have similar
counterintuitive behavior

� We need a way to figure out what programs
mean

� The C standard is an English language
description of this

� It is a free download

How To Think About C

� The C standard describes an “abstract
machine”

� Think of it as a simple interpreter for C

� For everything your program does, the C
abstract machine tells us the result

� C implementation has to act “as if” it � C implementation has to act “as if” it
implements the computation described by
the abstract machine

� But actually, it may do things very differently

int my_loop (int base) {

int index, count = 0;

for (index = base;

index < (base+10);

index++)

count++;

return count;

}

my_loop:

movl $10, %eax

ret

However…

� If you program breaks certain rules, the C
implementation can do anything it wants

� It’s very hard to create C programs that provably
don’t break the rules

� Let’s look in more detail about things you
can do in C

� 4 basic categories

� Some operations are defined to behave in a
certain way for all C implementations

(1+1)

a[5]=3; where a[5] is in-bounds

*p where p is “int *p” and p points to an int*p where p is “int *p” and p points to an int

if (z) { … } where z is initialized

� As a programmer your goal is to execute
mostly operations with well-defined
behavior

� Some operations have implementation-
defined behavior

� The C implementation chooses how to implement
the behavior

� The choice must be consistent and documented

� Examples

� Sizes of various integers (long, short, etc.)

� Integer representation� Integer representation

� Two’s complement? Ones’ complement?
Sign magnitude?

� Effect of bitwise operations on signed values

� Floating-point rounding behavior

� Use of implementation-defined constructs
in unavoidable in real C programs

� This can limit portability of code

� Some operations have unspecified behavior

� Implementation has freedom of choice

� Can make a different choice each time

� Examples

� Value of padding bytes in structures

� Order of evaluation of subexpressions

� Order of evaluation of function arguments

� Total of 53 kinds of unspecified behavior
mentioned in the C standard

� Your program must never rely on
something that is unspecified

� Code that may depend on unspecified behavior:

foo (x(),y());

� Code that definitely has unspecified behavior:

printf (“a”) + printf (“b”) + printf (“c”)

� Try this code at different optimization levels

� Some operations have undefined behavior

� Consequences are arbitrary

� Undefined behavior is always a serious bug

� Examples

� Null pointer dereference

� Improper type cast

� Out of bounds array access� Out of bounds array access

� Divide by zero

� Signed integer overflow

� Shift by negative or past bitwidth

� Read uninitialized value

� Access to dead stack variable

� Double-free, use-after-free

� Total of about 190 kinds undefined behavior
in the C standard

� However, some can be reliably detected at
compile time

� In practice, what happens when your
problem executes an operation with
undefined behavior?undefined behavior?

� Maybe the program does just what you expected

� Maybe it crashes

� Maybe nothing obvious – program appears to
continue normally but it is corrupted somehow

� The vast majority of security holes in C
applications are the result of undefined
behavior

Type 1 Functions
� Well-defined behavior for all inputs

int32_t safe_div_int32_t (int32_t a,

int32_t b)

{

if ((b == 0) || if ((b == 0) ||

((a == INT32_MIN) && (b == -1))) {

report_integer_math_error();

return 0;

} else {

return a / b;

}

}

Type 3 Functions

� Function always has undefined behavior

� Never write a function like this!

� In practice they happen by accident

� Compiler will often silently eliminate some or all
code in a function like thiscode in a function like this

int bad (void)

{

int x;

return x;

}

Another Type 3 Function

void str2 (void)

{

char *s = "hello";

printf("%s\n", s);

s[0] = 'H';

printf("%s\n", s);

}

� Why is it type 3?

� What are the compiler’s obligations?

str2:

subq $8, %rsp

movl $.LC1, %edx

movl $.LC0, %esi

movl $1, %edi

xorl %eax, %eax

call __printf_chkcall __printf_chk

movl $.LC1, %edx

movl $.LC0, %esi

movl $1, %edi

xorl %eax, %eax

addq $8, %rsp

jmp __printf_chk

Type 2 Functions

� Has undefined behavior for some inputs

int32_t div_int32_t (int32_t a,

int32_t b)

{

return a / b;

}

� When is it OK to call this function?

� When is it OK to write this function?

Compiling Type 2 Funcs

int stupid (int a) {

return (a+1) > a;

}

� What is this function’s precondition?

Compiling Type 2 Funcs

� Case 1: a != INT_MAX

� Behavior of + is defined → Computer is obligated
to return 1

� Case 2: a == INT_MAX

� Behavior of + is undefined → Compiler has no � Behavior of + is undefined → Compiler has no
particular obligations

� Generated code by “gcc –O2”:

stupid:

movl $1, %eax ret

Another Type 2

void __devexit agnx_pci_remove

(struct pci_dev *pdev)

{

struct ieee80211_hw *dev =

pci_get_drvdata(pdev);

struct agnx_priv *priv = dev->priv;

if (!dev) return;

... do stuff using dev ...

}

Case Analysis

� Case 1: dev == NULL

� “dev->priv” has undefined behavior → Compiler
has no particular obligations

� Case 2: dev != NULL

� Null pointer check won’t fail → Null pointer check � Null pointer check won’t fail → Null pointer check
is dead code and may be deleted

� This is real Linux kernel code!

� Since 2009 the Linux kernel us compiled using a
special GCC flag that say never to delete null
pointer checks

� Why not just fix the code?

� Why not require the C implementation to
emit a compile-time warning when a
program might contain undefined behavior?

� Why not require that the C implementation � Why not require that the C implementation
throw an exception in order to avoid
undefined behavior?

� How should you deal with undefined
behavior?

Signed/Unsigned in C

� Operators like +, -, <, <= in C have signed
and unsigned versions

� The version that gets chosen depends on the
signs of the operands

� Rule: If at least one operand is unsigned, the
operator is unsigned

int a,b;

unsigned c,d;

(a < b)

(c < d)

(a < c)

Integer Promotion

� Operators like +, -, <, <= in C have different
versions for different types

� float, double

� int, long, long long

� Rule: Both operands are “promoted” to int
before the operator executesbefore the operator executes

char c1, c2;

c1 = c1 + c2;

� Tricky: If an int can hold all of the values in
the original type, a value is promoted to int;
if not, it is promoted to unsigned int

� So, integer promotions always preserve value

� If one of the operands is larger than an int,
the other argument is promoted (if
necessary) to that size

� The type of the result of an arithmetic
operator is the promoted type of the
operands

� The type of the result of a comparison � The type of the result of a comparison
operator is int, regardless of the types of
the operands

� Integer promotion is performed before the
operator is chosen to be signed vs.
unsigned

Side Effects

� A C program interacts with the world using
side effects

� Side effects are…

� Accessing a volatile object

� Calling a function that is side-effecting

Side effects do not occur immediately, but � Side effects do not occur immediately, but
may be kept pending

� Why would this seem like a good idea?

Sequence Points

� A “sequence point” in C is a barrier that
side effects cannot pass

� When a sequence point is reached…

� All previous side effects must have taken effect� All previous side effects must have taken effect

� No subsequent side effects can have taken effect

� Between a pair of sequence points, side
effects can occur in any order

� It’s your problem to ensure that your code
contains enough sequence points to make it
correct

Finding Sequence Points
� Point of calling a function, after all arguments

are evaluated

� End of evaluating the first operand to && or ||

� End of evaluating the first operand to ? :

� End of each operand to the comma operator

� Completing the evaluation of a full � Completing the evaluation of a full
expression, defined as:

� Evaluating an initializer

� Expression in a regular statement terminated by a ;

� Controlling expressions in do, while, switch, for

� The other two expressions in a for

� Expression in a return

More Sequence Points

� C standard tells us that

� Between the previous and next sequence point
an object shall have its stored value modified at
most once by the evaluation of an expression.
Furthermore, the prior value shall be read only to
determine the value to be stored.

� Violating this rule leads to undefined � Violating this rule leads to undefined
behavior

� So don’t both read and write any single
variable in between a pair of sequence
points

� However, ++ and – are OK

� But just once per variable

Important

� Sequence points are about the abstract
machine

� They have nothing to do with the generated
code

� E.g.� E.g.

a++;

b++;

Can be translated to:

incl b;

incl a;

� Why?

Is the assembly code right?
int my_loop (int base) {

int index, count = 0;

for (index = base;

index < (base+10);

index++) index++)

count++;

return count;

}

my_loop:

movl $10, %eax

ret

Is the assembly code right?
int my_compare (void) {

signed char a = 1;

unsigned char b = -1;

return (a > b);

} }

my_compare:

movl $1, %eax

ret

Which compiler is right?
int another_compare (void) {

return -1 < (unsigned short)1;

}

another_compare:

movl $1, %eax

ret

another_compare:

mov #llo(0), r15

ret

gcc 4.3.2 for x86:

gcc 3.2.3 for msp430:

$ gcc foo.c –o foo

$./foo

Segmentation fault (core dumped)

$ gcc –O2 foo.c –o foo

$./foo

Hello, world.

Is it OK for the optimizer to turn a broken
program into a working one?

What about the other way around– is it OK for
the optimizer to break a working program?

What does each
of these mean?

� x = y = z;

� v++

� v + v++

� *p + (i=1)� *p + (i=1)

� (x=0) + (x=0)

� i = i + 1;

� i = (i = i + 1);

Summary

� To write effective C code you need to
understand and follow a lot of rules

� Your code must never rely on unspecified
behavior or execute an operation with undefined
behavior

Sequence points are your friend� Sequence points are your friend

� Mixing signed and unsigned values usually leads
to trouble

