
Page 1

Something Cool

� RFID is an exciting
and growing
technology

� This reader from
Parallax is $40 and
has a serial
interface

Lab

� Lab 1 due next Tues

� Seemed to go pretty well on Tues?

� Questions?

Quiz Results

� Problem 1: About 50% of class got it totally
right

� Problem 2:
� Most everyone got the first 4 parts correct

� Remaining 3 parts were about 60%

� Problem 3: 40%

� Problem 4: 50%

� Problem 5: 90% was close, about 20% was
totally correct

Last Time

� Low-level parts of the toolchain for
embedded systems
� Linkers

� Programmers

� Booting an embedded CPU

� Debuggers

� JTAG

� Any weak link in the toolchain will hinder
development

Today: Intro to Embedded C

� We are not learning C

� We are leaning “advanced embedded C”
� Issues that frequently come up when developing

embedded software

� Seldom care about these when writing general-
purpose apps

Embedded Compilers

� Today:
� General capabilities

� Specific issues part 1

� First: Almost all compilers for embedded
systems are cross-compilers
� Compiler runs on an architecture other than its

target

� Does this matter at all?

Page 2

Compiler Requirements

� Be correct
� Embedded compilers are notoriously buggy

� Relatively few copies sold

� Diverse hardware impedes thorough testing

� Produce small, fast code
� Speed and size are conflicting goals

� Oops!

� Take advantage of platform-specific features

� Produce code that’s easy to debug
� Conflicts with optimization

� Whole-program optimization particularly
problematic

Want To Tell the Compiler…

� There are only 32 KB of RAM
� Program must fit, but there’s no point reducing

RAM consumption further

� There are only 256 KB of ROM
� Again: Program must fit but there’s no point

reducing ROM consumption further

� Interrupt handler 7 is time critical
� So make it very fast, even if this bloats code

� Threads 8-13 are background threads
� Performance is unimportant so focus on

reducing code size

What We Get To Tell It

� A few compiler flags:
� -O2, -Os, Etc.

� May or may not do what you want

� Typically no flags for controlling RAM usage

� Therefore…
� Meeting resource constraints is 100% your

problem

� Shouldn’t assume compiler did the right thing

� Shouldn’t assume code you reuse does the right
thing

� Including the C library

� Figure out which resources matter and focus on
dealing with them

� Changing or upgrading compiler mid-project is
usually very bad

Nice Example

� I have a 1982 book on 6502 assembly
programming:
� strcmp(): compare two strings

� Registers used: all

� Execution time: 93 + 19 * length of shorter
string

� Code size: 52 bytes

� Data size:

� 4 bytes on page 0

� 4 bytes to hold the string pointers

� Try to find this information for current C
libraries!

Why use C?

� “Mid-level” language
� Some high-level features

� Good low-level control

� Static types

� Type system is easily subverted

� C is popular and well-understood
� Plenty of good developers exist

� Plenty of good compilers exist

� Plenty of good books and web pages exist

� In many cases there’s no obviously
superior language

Why not use C?

� Hard to write portable code
� For example “int” does not have a fixed size

� Hard to write correct code
� Very hard to tell when your code does something

bad

� E.g. out-of-bounds array reference

� This is Microsoft’s major problem…

� Language standard is weak in some areas
� Means there is plenty of diversity in

implementations

� Linking model is unsafe

� Preprocessor is poorly designed

Page 3

CPP – the C Preprocessor

� CPP runs as a separate pass before the
compiler

� Basic usage:
� #define FOO 32

� int y = FOO;

� Compiler sees:
� int y = 32;

� CPP operates by lexical substitution

� Important: The compiler never sees FOO

� So of course the debugger, linker, etc. do not
know about it either

Some Interesting Macros

#define PLUS_ONE(x) x+1

int a = PLUS_ONE(y)*3

#define TIMES_TWO(x) (x*2)

int a = TIMES_TWO(1+1)

#define MAX(x,y) ((x)>(y)?(x):(y))

void f () { int m = MAX(a++,b); }

#define INT_POINTER int *

INT_POINTER x, y;

Macro Problems

� Root of the problem:
� C preprocessor is highly error-prone

� Avoid it except to do very simple things

� Fully parenthesize macro definitions

� Make macro usage conventions clear

� Entertaining macros:
#define DISABLE_INTS asm volatile (“cli”); {

#define ENABLE_INTS asm volatile (“sei”); }

� Is this good or bad macro usage?

� Old conventional wisdom:
� Careful use of CPP is good

� New conventional wisdom:
� Most uses of CPP can be avoided

� Trust the optimizer

Macro Avoidance

� Constants
� Instead of

� #define X 10

� Use

� const int X = 10;

� Functions
� Instead of

� #define INC_X x++

� Use

� inline void INC_X(void) { x++ }

More Macro Avoidance

� Conditional compilation
� Instead of

� #if FOO … #endif

� Use

� if (FOO) { … }

� Instead of

� #ifdef X86 … #endif

� Put x86 code into a separate file

� However: Design of C makes it impossible
to avoid macros entirely
� C++ much better in this respect

Page 4

Bit Manipulation
without Macros

� Something like this is good:

void set_bit (int *a, int bit) {

*a |= (1<<bit);

}

void clear_bit (int *a, int bit) {

*a &= ~(1<<bit);

}

CPP in Action

� Sometimes you need to look at the CPP
output
� That is, see what the C compiler really sees

� There’s always a way to do this

� In CodeWarrior, do this using the IDE

� For gcc: “gcc –E foo.c”

Intrinsics

� “Intrinsic” functions are built in to the
compiler
� As opposed to living in a library somewhere

� Why do compilers support intrinsics?
� Efficiency – can perform interesting

optimizations

� Ease of use

� Compiler can add function calls where they
do not exist in your code

� Compiler can eliminate “library calls” in your
code

� Need to be careful when compiler inserts
function calls for you!

Integer Division Intrinsics
� On ARM7

sdiv:

str lr, [sp, #-4]!

bl __divsi3

ldr pc, [sp], #4

� On AVR

sdiv:

rcall __divmodhi4

mov r25,r23

mov r24,r22

ret

int sdiv (int x, int y)

{

return x/y;

}

Copy Intrinsic

ColdFire code:

struct_copy2:

link a6,#0

moveq #6,d1

move.w (a1),(a0)

move.w 2(a1),2(a0)

addq.l #4,a1

addq.l #4,a0

subq.l #1,d1

bne.s *-14

unlk a6

rts

struct foo {

int x, y[3];

double z;

};

void struct_copy2 (struct foo *a,

struct foo *b)

{

*a = *b;

}

More Copy
� On ARM7

struct_copy2:

str lr, [sp, #-4]!

mov lr, r1

mov ip, r0

ldmia lr!, {r0, r1, r2, r3}

stmia ip!, {r0, r1, r2, r3}

ldmia lr, {r0, r1}

stmia ip, {r0, r1}

ldr pc, [sp], #4

Page 5

Copy on x86-64

� From Intel CC (but copying a larger struct):

struct_copy:

pushq %rsi

movl $4000, %edx

call _intel_fast_memcpy

popq %rcx

ret

String Length

int len_hello1 (void)

{

return strlen ("hello");

}

� ColdFire code:

len_hello1:

0x00000000 link a6,#0

0x00000004 lea _@71,a0

0x0000000A jsr _strlen

0x00000010 unlk a6

0x00000012 rts

Another String Length

� ARM7

len_hello1:

mov r0, #5

bx lr

So What?

� Compiler can add function calls where you
didn’t have one

� Compiler can take out function calls that
you put in

� How will you understand the resource
usage of the resulting code?
� What resources are we even talking about?

30-Second Interrupt Review
� Interrupts are a kind of asynchronous

exception

� When some external condition becomes
true, CPU jumps to the interrupt vector

� When an interrupt returns, previously
executing code resumes as if nothing
happened
� Unless the interrupt handler is buggy

� Also, the state of memory and/or devices has
probably changed

� With appropriate compiler support
interrupts look just like regular functions
� Don’t be fooled – there are major differences

between interrupts and functions

ARM / GCC Interrupt

void __attribute__ ((interrupt("IRQ")))

tc0_cmp (void);

{

timeval++;

VICVectAddr = 0;

}

� All embedded compilers provide similar
extensions

� C language has no support for interrupts

Page 6

Example CF Interrupt

� You write:

__declspec(interrupt)

void rtc_handler(void)

{

MCF_GPIO_PORTTC ^= 0xf;

}

� After CPP:

__declspec(interrupt)

void rtc_handler(void)

{

(*(vuint8 *)(0x4010000F)) ^= 0xf;

}

Assembly for CF Interrupt
rtc_handler:

strldsr #0x2700

link a6,#0

lea -16(a7),a7

movem.l d0-d1/a0,4(a7)

movea.l #1074790415,a0

moveq #0,d1

move.b (a0),d1

moveq #15,d0

eor.l d0,d1

move.b d1,(a0)

movem.l 4(a7),d0-d1/a0

unlk a6

addq.l #4,a7

rte

Inline Assembly

� Two reasons to add assembly into a C
program:

1. Need to say something that can’t be said in C

2. Need higher performance than the C compiler
provides

� In both cases
� Write most of a function in C and then throw in a

few instructions of assembly where needed

� Let the compiler do the grunt work of
respecting the calling convention

� When writing asm to increase performance:
� Be absolutely sure you identified the culprit

� First try to write faster C

CodeWarrior Inline Asm

long square (short a) {

long result=0;

asm {

move.w a,d0 // fetch function argument ‘a’

mulu.w d0,d0 // multiply

move.l d0,result // store in local ‘result’

}

return result;

}

� Compiler generates glue code integrating the assembler
and C code

� What if it can’t?

Inline Assembly Example

square:

link a6,#0

subq.l #8,a7

move.w d0,-8(a6)

clr.l -6(a6)

move.w -8(a6),d0

mulu.w d0,d0

move.l d0,-6(a6)

move.l -6(a6),d0

unlk a6

rts

GCC Inline Assembly

� Format:

asm volatile (code : outputs : inputs : clobbers);

� Code – instructions

� Outputs – maps results of instructions into C
variables

� Inputs – maps C variables to inputs of instructions

� Clobbers – tells the compiler to forget the contents
of registers that were invalidated by the assembly
code

� This syntax is much more difficult to use than
CodeWarrior’s!

Page 7

Important From Today

� Embedded C
� Pros and cons

� Macros and how to avoid them

� Intrinsics

� Interrupt syntax

� Inline assembly

