Something Cool

¢ RFID is an exciting
and growing
technology

¢ This reader from
Parallax is $40 and
has a serial
interface

Lab

¢ Lab 1 due next Tues
¢ Seemed to go pretty well on Tues?
¢ Questions?

¢ 6 o

Quiz Results

Problem 1: About 50% of class got it totally
right

Problem 2:

» Most everyone got the first 4 parts correct
» Remaining 3 parts were about 60%

Problem 3: 40%
Problem 4: 50%

Problem 5: 90% was close, about 20% was
totally correct

Last Time

Low-level parts of the toolchain for
embedded systems

> Linkers
> Programmers
» Booting an embedded CPU
» Debuggers
> JTAG

Any weak link in the toolchain will hinder
development

Today: Intro to Embedded C

¢ We are not learning C

¢ We are leaning “advanced embedded C”

> Issues that frequently come up when developing
embedded software

» Seldom care about these when writing general-
purpose apps

Embedded Compilers

¢ Today:
» General capabilities
» Specific issues part 1

¢ First: Almost all compilers for embedded
systems are cross-compilers

» Compiler runs on an architecture other than its
target

> Does this matter at all?

Compiler Requirements

¢ Be correct
» Embedded compilers are notoriously buggy
> Relatively few copies sold
» Diverse hardware impedes thorough testing

¢ Produce small, fast code
» Speed and size are conflicting goals
» Oops!
» Take advantage of platform-specific features
¢ Produce code that’s easy to debug

» Conflicts with optimization

> Whole-program optimization particularly
problematic

Want To Tell the Compiler...

¢ There are only 32 KB of RAM

» Program must fit, but there’s no point reducing
RAM consumption further

¢ There are only 256 KB of ROM

» Again: Program must fit but there’s no point
reducing ROM consumption further

¢ Interrupt handler 7 is time critical
» S0 make it very fast, even if this bloats code

¢ Threads 8-13 are background threads

» Performance is unimportant so focus on
reducing code size

What We Get To Tell It

¢ A few compiler flags:
> =02, -Os, Etc.
» May or may not do what you want
» Typically no flags for controlling RAM usage

¢ Therefore...

» Meeting resource constraints is 100% your
problem

» Shouldn’t assume compiler did the right thing

» Shouldn’t assume code you reuse does the right
thing

» Including the C library

> Figure out which resources matter and focus on
dealing with them

» Changing or upgrading compiler mid-project is
usually very bad

Nice Example

¢ | have a 1982 book on 6502 assembly
programming:
» strcmp(): compare two strings
> Registers used: all

» Execution time: 93 + 19 * length of shorter
string

» Code size: 52 bytes
> Data size:
> 4 bytes on page 0
> 4 bytes to hold the string pointers

¢ Try to find this information for current C
libraries!

Why use C?

“Mid-level” language

Some high-level features

Good low-level control

Static types

Type system is easily subverted

C is popular and well-understood
> Plenty of good developers exist

» Plenty of good compilers exist
» Plenty of good books and web pages exist

In many cases there’s no obviously
superior language

>
>
>
>

Why not use C?

¢ Hard to write portable code
» For example “int” does not have a fixed size
¢ Hard to write correct code

» Very hard to tell when your code does something
bad

» E.g. out-of-bounds array reference
» This is Microsoft’s major problem...

¢ Language standard is weak in some areas

> Means there is plenty of diversity in
implementations

¢ Linking model is unsafe
¢ Preprocessor is poorly designed

CPP - the C Preprocessor

¢ o

CPP runs as a separate pass before the
compiler

Basic usage:

> #define FOO 32

» int y = FOO;

Compiler sees:

> int y = 32;

CPP operates by lexical substitution

Important: The compiler never sees FOO

» So of course the debugger, linker, etc. do not
know about it either

Some Interesting Macros

#define PLUS ONE (x) x+1
int a = PLUS_ONE (y) *3

#define TIMES TWO (x) (x*2)
int a = TIMES TWO(1+1)

#idefine MAX(x,y) ((x)>(y)?(x):(y))
void £ () { int m = MAX(a++,b); }

#define INT POINTER int *
INT POINTER X, V;

Macro Problems

¢ Root of the problem:
» C preprocessor is highly error-prone
» Avoid it except to do very simple things
» Fully parenthesize macro definitions
» Make macro usage conventions clear

¢ Entertaining macros:
#define DISABLE INTS asm volatile (“ecli”); {
#define ENABLE INTS asm volatile (“sei”); }

» Is this good or bad macro usage?

¢ Old conventional wisdom:
» Careful use of CPP is good

¢ New conventional wisdom:
> Most uses of CPP can be avoided
» Trust the optimizer

Macro Avoidance

¢ Constants

> Instead of
> #define X 10

» Use
> const int X = 10;

¢ Functions
> Instead of
> ##define INC_ X x++
> Use
> inline void INC X (wvoid) { x++ }

More Macro Avoidance

¢ Conditional compilation

» Instead of
> #if FOO .. #endif
> Use
> i1f (FOO) { .. }
» Instead of
> #ifdef X86 .. #endif
» Put x86 code into a separate file

¢ However: Design of C makes it impossible
to avoid macros entirely

» C++ much better in this respect

Bit Manipulation
without Macros

¢ Something like this is good:

void set_bit (int *a, int bit) {
*a |= (l<<bit);

}

void clear bit (int *a, int bit) {
*a &= ~(1l<<bit);

CPP in Action

¢ Sometimes you need to look at the CPP
output

That is, see what the C compiler really sees
There’s always a way to do this
In CodeWarrior, do this using the IDE

>
>
>
» For gcc: “gcc —E foo.c”

Intrinsics

“Intrinsic” functions are built in to the
compiler
» As opposed to living in a library somewhere

Why do compilers support intrinsics?

> Efficiency — can perform interesting
optimizations

> Ease of use

» Compiler can add function calls where they
do not exist in your code

» Compiler can eliminate “library calls” in your
code

Need to be careful when compiler inserts
function calls for you!

Integer Division Intrinsics

int sdiv (int x,

{

return x/y;

int y)

¢ On ARM7
sdiv:
str lr, [sp, #-4]!
bl __divsi3
1ldr pc, [spl, #4
¢ OnAVR
sdiv:
rcall _ divmodhi4d
mov r25,r23
mov r24,r22

ret

Copy Intrinsic

struct foo {
int x, y[3];
double z;

};

void struct_copy2 (struct foo *a,

struct foo *b)

ColdFire code:

struct_copy2:
link a6, #0
moveq #6,d1
move.w (al), (a0)
move.w 2(al), 2 (a0)
addg.1 #4,al
addg.1l #4,a0
subg.1l #1,d1
bne.s *-14
unlk a6

rts

More Copy

¢ On ARM7

struct_copy2:
str lr, [sp, #-4]!
mov lr, rl
mov ip, rO0
ldmia 1r!', {xr0, rl, r2, r3}
stmia ip!, {r0, rl, r2, r3}
ldmia 1lr, {r0O, rl}
stmia ip, {r0, rl}
ldr pc, [spl, #4

Copy on x86-64

¢ From Intel CC (but copying a larger struct):

struct_copy:

pushqg srsi

movl $4000, %edx

call _intel_fast_ memcpy
popq srex

ret

String Length

int len hellol (void)
{

return strlen ("hello");

¢ ColdFire code:

len hellol:

0x00000000 1link a6, #0
0x00000004 1lea _@71,a0
0x0000000A Isr _strlen
0x00000010 wunlk a6

0x00000012 rts

Another String Length

¢ ARM7

len hellol:
mov rO, #5
bx 1lr

So What?

Compiler can add function calls where you
didn’t have one

Compiler can take out function calls that
you put in

How will you understand the resource
usage of the resulting code?

» What resources are we even talking about?

30-Second Interrupt Review

¢

¢

Interrupts are a kind of asynchronous
exception

When some external condition becomes
true, CPU jumps to the interrupt vector

When an interrupt returns, previously
executing code resumes as if nothing
happened
» Unless the interrupt handler is buggy
» Also, the state of memory and/or devices has
probably changed

With appropriate compiler support
interrupts look just like regular functions

» Don’t be fooled — there are major differences
between interrupts and functions

ARM / GCC Interrupt

void _ attribute_ ((interrupt ("IRQ")))
tcO_cmp (void);
{

timeval++;

VICVectAddr = O;

¢ All embedded compilers provide similar
extensions

¢ Clanguage has no support for interrupts

Example CF Interrupt

¢ You write:
__declspec (interrupt)
void rtc _handler (void)

{
MCF_GPIO_PORTTC “= Oxf;

}

¢ After CPP:
__declspec (interrupt)
void rtc handler (void)

{
(* (vuint8 *) (0x4010000F)) *= Oxf;

Assembly for CF Interrupt

rtc_handler:

strldsr #0x2700

link a6, #0

lea -16(a7),a’
movem.l dO0-dl/a0,4(a7)
movea.l #1074790415, a0
moveq #0,d1

move.b (a0) ,d1l

moveq #15,d0

eor.1l d0,dl

move.b dl, (a0)
movem.l 4 (a7),d0-dl/a0
unlk a6

addq.1l #4,a7

rte

Inline Assembly

Two reasons to add assembly intoa C
program:
1. Need to say something that can’t be said in C

2. Need higher performance than the C compiler
provides

In both cases

» Write most of a function in C and then throw in a
few instructions of assembly where needed

> Let the compiler do the grunt work of
respecting the calling convention

When writing asm to increase performance:

> Be absolutely sure you identified the culprit
» First try to write faster C

CodeWarrior Inline Asm

long square (short a) {
long result=0;
asm {
move.w a,d0 // fetch function argument ‘a’
mulu.w d0,d0 // multiply
move.l dO,result // store in local ‘result’

}

return result;

¢ Compiler generates glue code integrating the assembler
and C code

¢ What if it can’t?

Inline Assembly Example

square:
link a6, #0
subqg.l #8,a7
move .w d0, -8 (a6)

clr.1l -6 (a6)
move .w -8 (a6),dol
mulu.w d0, do
move.l d0, -6 (a6)
move.l -6 (a6) ,do0
unlk a6

rts

GCC Inline Assembly

¢ Format:

asm volatile (code : outputs : inputs : clobbers);
» Code - instructions

» Outputs — maps results of instructions into C
variables

> Inputs — maps C variables to inputs of instructions

» Clobbers — tells the compiler to forget the contents
of registers that were invalidated by the assembly
code

¢ This syntax is much more difficult to use than
CodeWarrior’s!

4

® & o o

Important From Today

Embedded C

» Pros and cons
Macros and how to avoid them
Intrinsics
Interrupt syntax
Inline assembly

