
Page 1

Ripped From The Headlines

� OpenBTS:
� “A software-based GSM access point, allowing

standard GSM-compatible mobile phones to
make telephone calls without using existing
telecommunication providers' networks.”

� Any random Linux machine can be a cell
phone base station at 10% of previous cost
� Someone even turned an Android phone into a

little cell

� Uses existing:
� VoIP software to turn calls into data

� PBX software (like Asterix) to route calls

� Island of Niue is going to use it

� http://openbts.sourceforge.net/

Last Time

� Embedded systems introduction
� Definition of embedded system

� Common characteristics

� Kinds of embedded systems

� Crosscutting issues

� Software architectures

� Choosing a processor

� Choosing a language

� Choosing an OS

Today

� ARM and ColdFire
� History

� Variations

� ISA (instruction set architecture)

� Both 32-bit

� Also some examples from
� AVR: 8-bit

� MSP430: 16-bit

Embedded Diversity

� There is a lot of diversity in what embedded
processors can accomplish, and how they
accomplish it

� Example
� General purpose processors can perform

multiplication in a single cycle

� Mid-grade microcontrollers will have a HW
multiply unit, but it’ll be slow

� Low-end microcontrollers have no multiplier

Lots of chips…

� Freescale – top embedded processor
manufacturer with ~28% of total market
� HC05, HC08, HC11, HC12, HC16, ColdFire, PPC,

etc.

� Largest supplier of semiconductors for the
automobile market

� ARM – the most popular 32-bit architecture
� By 2008 ARM had shipped 10 billion processors

� ARM population > human population

� 5 billion chips predicted to ship in 2011

Brief ColdFire History

� 1979 – Motorola 68000 processors first ship
� Forward-thinking instruction set design

� Inspired by PDP-11 and others

� 32-bit architecture with 16-bit implementation

� Basis for early Sun workstations, Apple Lisa and
Macintosh, Commodore Amiga, and many more

� 1994 – ColdFire core developed
� 68000 ISA stripped down to simplify HW

� 2004 – Motorola Semiconductor Products
Sector spun off to create Freescale
Semiconductor

Page 2

Brief ARM History

� 1978 – Acorn started
� Make 6502-based PCs

� Most sold in Great Britain

� 1983 – Development of Acorn RISC Machine
begins
� 32-bit RISC architecture

� Motivation: snubbed by Intel

� 1990 – Processor division spun off as ARM
� “Advanced RISC Machines”

� 1998 – Name changed to ARM Ltd.

� Fact: ARM sells only IP
� All processors fabbed by customers

ARM=RISC, ColdFire=CISC?

� Instruction length
� ARM – fixed at 32 bits

� Simpler decoder

� ColdFire – variable at 16, 32, 48 bits

� Higher code density

� Memory access
� ARM – load-store architecture

� ColdFire – some ALU ops can use memory

� But less than on 68000

� Both have plenty of registers

ARM Family Members

� ARM7 (1995)
� Three stage pipeline

� ~80 MHz

� 0.06 mW / MHz

� 0.97 MIPS / MHz

� Usually no cache, no MMU, no MPU

� ARM9 (1997)
� Five stage pipeline

� ~150 MHz

� 0.19 mW / MHz + cache

� 1.1 MIPS / MHz

� 4-16 KB caches, MMU or MPU

More ARM Family

� ARM10 (1999)
� Six-stage pipeline

� ~260 MHz

� 0.5 mW / MHz + cache

� 1.3 MIPS / MHz

� 16-32 KB caches, MMU or MPU

� ARM11 (2003)
� Eight-stage pipeline

� ~335 MHz

� 0.4 mW / MHz + cache

� 1.2 MIPS / MHz

� configurable caches, MMU

New ARM Chips: Cortex

� Cortex-A8
� Superscalar

� 1 GHz at < 0.4 W

� Cortex-A9
� Superscalar, out of order

� Can be multiprocessor

� This is the iPad processor

� Cortex-R4 – real-time systems
� So far, not very popular

Cortex Continued

� Cortex-M0, M1, M3, M4 – small systems
� Intended to replace ARM7TDMI

� Intended to kill 8-bit and 16-bit CPUs in new
designs

� Most variants execute only Thumb-2 code

� Some are below $1 per chip

� M0 is really small
� ~12,000 gates

� M1 is intended for FPGA targets

� M3 is more or less equivalent to the
ColdFire we’ll be using

� M4 is faster, up to a few hundred MHz

Page 3

Register Files

� Both ColdFire and ARM
� 16 registers available in user mode

� Each register is 32 bits

� ColdFire
� A7 – always the stack pointer

� Program counter not part of the register file

� ARM
� r13 – stack pointer by convention

� r14 – link register by convention: stores return
address of a called function

� r15 – always the program counter

ColdFire Registers

ARM Banked Registers

� 37 total registers
� Only 18 available at any given time

� 16 + cpsr + spsr

� cpsr = current program status register

� spsr = saved program status register

� Some register names refer to different
physical registers in different modes

� Other registers shared across all modes
� E.g. r0-r6, cpsr

� Why is banking supported?

� Banked registers seem to be going away
� Thumb-2 doesn’t have it

ColdFire Instructions

� Classic two address code

int sum (int a, int b)

{

return a + b;

}

link a6,#0

add.l d1,d0

unlk a6

dest

src1
src2

ARM Instructions

� Classic three address code

int sum (int a, int b)

{

return a + b;

}

00000008 <sum>:

8: e0800001 add r0, r0, r1

c: e12fff1e bx lr

dest src1

src2

Page 4

MSP430 Instructions

� Two address code

int sum (int a, int b)

{

return a + b;

}

sum:

add r14, r15

ret

dest

src1
src2

Now “int” is 16 bits,
so we’re only
getting half as much
work done

AVR Instructions

� Two address code

int sum (int a, int b)

{

return a + b;

}

sum:

add r22,r24

adc r23,r25

mov r24,r22

mov r25,r23

ret

Again “int” is 16 bits

But why is the code
gross?

32-bit Add on AVR

sum:

add r18,r22

adc r19,r23

adc r20,r24

adc r21,r25

mov r22,r18

mov r23,r19

mov r24,r20

mov r25,r21

ret

Ugh!

8-bit processors can
waste a lot of cycles
doing this kind of thing

int smul (int x, int y)

{

return x*y;

}

� ColdFire code:

smul:

link a6,#0

muls.l d1,d0

unlk a6

rts

� ARM7

smul:

mul r0, r1, r0

bx lr

� Baseline AVR

smul:

rcall __mulhi3

ret

� ATmega128 (largish AVR):

smul:

mul r22,r24

movw r18,r0

mul r22,r25

add r19,r0

mul r23,r24

add r19,r0

clr r1

movw r24,r18

ret

Page 5

int sdiv (int x, int y)

{

return x/y;

}

� ColdFire code:

sdiv:

link a6,#0

divs.l d1,d0

unlk a6

rts

� On ARM7

sdiv:

str lr, [sp, #-4]!

bl __divsi3

ldr pc, [sp], #4

� On AVR

sdiv:

rcall __divmodhi4

mov r25,r23

mov r24,r22

ret

ARM Integrated Shifting

� Most instructions can use a barrel
shift unit “for free”
� Improves code density?

int foo (int a, int b) {

return a + (b << 5); }

00000000 <foo>:

0:e0800281 add r0, r0, r1, lsl #5

4:e12fff1e bx lr

� What are the costs of this design
decision?

ARM Conditional Execution
� When condition is false, squash the

executing instruction

� Supports implementing (simple)
conditional constructs without branches

� Helps avoid pipeline stalls

� Compensates for lack of branch prediction
in low-end processors

� Unique ARM feature: Almost all
instructions can be conditional

� Suffixes in instruction mnemonics
indicate conditional execution
� add – executes unconditionally

� addeq – executes when the Z flag is set

Conditional Example

int max (int a, int b)

{

if (a>b) return a;

return b;

}

000000bc <max>:

bc:e1500001 cmp r0, r1

c0:b1a00001 movlt r0, r1

c4:e12fff1e bx lr

Another example: GCD

int gcd (int i, int j)

{

while (i != j) {

if (i>j) {

i -= j;

} else {

j -= i;

}

}

return i;

}

Page 6

GCD assembly

000000d4 <gcd>:

d4: e1510000 cmp r1, r0

d8: 012fff1e bxeq lr

dc: e1510000 cmp r1, r0

e0: b0610000 rsblt r0, r1, r0

e4: a0601001 rsbge r1, r0, r1

e8: e1510000 cmp r1, r0

ec: 1afffffa bne dc <gcd+0x8>

f0: e12fff1e bx lr

GCD on ColdFire

gcd:

link a6,#0

cmp.l d1,d0

beq.s *+16

cmp.l d1,d0

ble.s *+6

sub.l d1,d0

bra.s *+4

sub.l d0,d1

cmp.l d1,d0

bne.s *-12

unlk a6

rts

Multiply and Accumulate

� DSP codes such as FIR and IIR typically boil
down to repeated multiply and add

int inner (int k, int j) {

int i;

int result = 0;

for (i=0; i < 10; i++) {

result += data[k][j] *

coeff[k][i];

}

return result;

}

Multiply and Accumulate
00000000 <inner>:

0: e0800100 add r0, r0, r0, lsl #2

4: e59f3034 ldr r3, [pc, #52] ; 40 <.text+0x40>

8: e0811200 add r1, r1, r0, lsl #4

c: e52de004 str lr, [sp, #-4]!

10: e793e101 ldr lr, [r3, r1, lsl #2]

14: e59f3028 ldr r3, [pc, #40] ; 44 <.text+0x44>

18: e3a0c000 mov ip, #0 ; 0x0

1c: e0831180 add r1, r3, r0, lsl #3

20: e1a0200c mov r2, ip

24: e2822001 add r2, r2, #1 ; 0x1

28: e4913004 ldr r3, [r1], #4

2c: e352000a cmp r2, #10 ; 0xa

30: e02cce93 mla ip, r3, lr, ip

34: 1a000007 bne 24 <inner+0x24>

38: e1a0000c mov r0, ip

3c: e49df004 ldr pc, [sp], #4

40: 00000140 andeq r0, r0, r0, asr #2

44: 00000000 andeq r0, r0, r0

Multiple-Register Transfer

� ColdFire:
movem.l d0-d7/a0-a6,(a7)

� ARM:

stmdb sp!, {r4, r5, r6, r7, r8, r9, sl, fp, lr}

� Improves code density

� More efficient – why?

� Main disadvantages?

� Solutions?

ARM: Thumb

� Alternate instruction set supported by many
ARM processors

� 16-bit fixed size instructions
� Only 8 registers easily available

� Saves 2 bits

� Registers are still 32 bits

� Drops 3rd operand from data operations

� Saves 5 bits

� Only branches are conditional

� Saves 4 bits

� Drops barrel shifter

� Saves 7 bits

Page 7

ARM: Thumb

� Natural evolution of RISC ideas for
embedded processors
� Low gate count in decode logic no longer as

important

� Still, decode shouldn’t be too hard

� Want compact instructions to keep I-fetch costs
low

� Why use Thumb?
� 30% higher code density

� Potentially higher performance on systems with
16-bit memory bus

� Why not use Thumb?
� Performance may suffer on systems with 32-bit

memory bus

Thumb Continued

� Thumb implementation
� Thumb bit in the cpsr tells the CPU which mode

to execute in

� In Thumb mode, each instruction is decoded to
an ARM instruction and then executed

� ARM-Thumb “Interworking”:
� Calling between ARM and thumb code

� Compiler will do the dirty work if you pass it the
right flags

� How to decide which routines to compile as
ARM vs. Thumb?

� Thumb2: Supposed to give code density
benefit w/o performance loss
� So theoretically Thumb and ARM support can be

dropped from future chips

MCF52233

� This is the chip on our demo boards

� ColdFire v2 – low-end embedded
� No MMU or FPU

� Single issue

� 256 Kbyte Flash

� 32 Kbyte RAM

� 8ch x 12-Bit ADC

� QSPI, IIC, and CAN Serial ports

� Fast Ethernet Controller (FEC) and Ethernet
Phy (ePHY)

� ~$7.00 in large quantities

M52233DEMO Board

� CPU

� Ethernet port

� USB port

� Serial port

� 3-axis accelerometer

� 4 user-controlled LEDs

� 2 user-controlled push switches

� 5k ohm pot

� Costs $99

Summary

� There’s wide diversity in what the HW will
do for you

� ARM and ColdFire are important embedded
architectures
� Both are “modern”

� Worth looking at in detail

� MSP430 is extremely low power
� But not clear how it will compete with newer ARM

devices

� AVR has a large entrenched market
� Low-end AVRs are really tiny and will remain

popular

� Higher-end AVRs are in a difficult position
against the Cortex M0

