Today

¢ Course perspective and logistics
¢ Embedded systems introduction

Course Perspective #1:
Mostly About Software

¢ The purpose of an advanced class is to
tackle an area in depth

» This course is primarily about embedded software
» SW is primary focus on labs, exams, etc.

¢ In contrast 5780 is a basic course and tries
to give a broad overview of microcontroller
system issues

Course Perspective #2:
Holistic

Can’t just look at an embedded system as a
collection of parts

Many important issues involve the whole
system

> Debugging

» Security

» Timeliness

» Power and energy use

¢ Q: Why focus on a holistic view of
embedded software?

¢ A: You are extremely valuable if you:

1. Have a deep understanding of both the HW and
SW sides of embedded system design, and how
they interact

2. Can see the big picture about a software design
in order to spot potential problems and
opportunities

¢ What does “extremely valuable” mean?

Prereqs and Expectations

¢ Everyone should already:
> Be able to write and debug C programs

» Understand basic systems concepts — interrupts,
device interfacing, etc.

> From CS/ECE 5780, CS 4400, CS 5460, ...

¢ CS folks need to be willing to learn:
> Breadboarding
» Logic analyzer use
> How to read vendor reference manuals

¢ ECE folks need to be willing to learn:
» Software engineering material
> System-level software thinking

» A bit of programming language and compiler
material

Course Components

Lecture
» | expect good attendance
» If attendance is too bad | start giving pop quizzes

Labs

» Embedded programming projects
> Bulk of your time will be spent on these

Homework
> Pretty minimal — handful of assignments

Exams
> 1 midterm, 1 final

Textbook

¢ Better Embedded System
Software, by Phillip
Koopman

¢ Also: Get agood bookon C
programming
» Course web page lists one ‘fu\ umnmlowﬁféec%@\ﬁ;@w

&\ SAFETY? DEPENDABILILY

» There are other good ones, we o ARC}{ITEQRHRE% nEqmnEMENTgw-zg
can talk about this... oS CDESIGN: Pnncggsj’ -
Nk, %LLF n

Labs

Tuesdays, 3:40-5:00 in the ECE Digital Lab
> MEB 2265

Programming environment is CodeWarrior
IDE which runs on Windows

> Free download if you want to run it on your
machines

Programming target is a ColdFire
development board from FreeScale

> Nice 32-bit CPU

You work in groups of two
> Best to have one CS person, one ECE person!

Determines 50% of your course grade

To Do

¢ Get on the ¢s5785 course mailing list
> See https://sympa.eng.utah.edu/sympa
» One list for all course sections

» I'll assume everyone reads this

>

>

Mail to this list goes to all subscribers
To mail just me and the TA use
> teach-cs5785@list.eng.utah.edu

¢ Look for a number starting with 2* on the
back of your Ucard

» If this number isn’t there, you need a new card

> The 2* indicates a modern card that contains the
RFID chip that will get you into the lab

¢ Questions?

Embedded Systems

¢ Account for >99% of new
microprocessors

» Consumer electronics
» Vehicle control systems
» Medical equipment

> Etc.

Definitions of
“Embedded System”

A special-purpose computer that interacts with
the real world through sensing and/or actuation

A computer that you don’t think of as a
computer

Almost any computer that isn’t a PC

¢ o

More definitions

Microprocessor: A regular CPU

Microcontroller: A system on chip that
contains extra support for dealing with the
real world

Analog to digital and digital to analog converters
Pulse width modulation

Networks: serial, 12C, CAN, USB, 802.15.4, etc...
General-purpose I/O pins

Lots of interrupt lines

Low-power sleep modes

Voltage / frequency scaling

Temperature / vibration resistance

Onboard volatile and nonvolatile RAM

What else?

A\

vV V ¥V ¥V VYV V ¥V V V

Embedded Characteristics

¢ Close interaction with the physical world
» Often must operate in real time

¢ Constrained resources

> Memory

> SRAM, DRAM, flash, EEPROM, ...

» Energy
» CPU cycles
> Pins
» Flash memory read / write cycles
> What else?

¢ o

More Characteristics

Concurrent
» Easy to make concurrency errors
> Hard to find and fix them

Often lack:

» Virtual memory

» Memory protection

» Hardware supported user-kernel boundary
» Secondary storage

Have to be developed rapidly

Cost sensitive

> Per-unit cost often dominates overall cost of a
product

Important Difference

¢ Unlike PC software, embedded software is
developed in the context of a particular
piece of hardware

» This is good:

> App can be tailored very specifically to
platform

» In many cases writing portable software is not
a concern

» This is bad:
» All this tailoring is hard work

What Do Embedded
Systems Do?

¢ 5 main kinds of functionality:
» Digital signal processing
» Open loop and closed loop control
» Wired and wireless networking
» User interfacing
» Storage management

¢ Most embedded systems do 1-4 of these
¢ Which apply to:

» Cell phone?

» LinkSys home router?
» Cruise control?

» Stoplight?

Digital Signal Processing

¢ Idea:

» Operate on discrete approximations of
continuous signals

¢ Origins in the 1960s and 70s:
> Radar and sonar
» Space program
» Oil exploration
> Medical imaging
¢ Far broader applicability today

More DSP

¢ Applications:

Telecom: Compression, echo control, wireless
Audio: Music, speech generation and recognition
Echo location: Radar, sonar, medical, seismology

Image processing: Compression, feature
recognition, manipulation

¢ You could take years of courses on DSP
» Extremely broad topic
» Extensive theoretical underpinnings

YV VYV VY V

Control

Idea
» Make stuff happen in the world

Open loop control
» No feedback
» E.g. toaster, stoplight

Closed loop control
» Uses feedback to adjust output
> E.g. thermostat, cruise control

You could take years of courses on control
> But you better enjoy differential equations...

Networking

Idea
> Processors want to talk to each other

Differences from PC networking
» Communication is often local
> E.g. “unlock the driver’s side door”
» Specialized protocols
» Often not TCP/IP
» Topology may be fixed
» Often low-bandwidth
> Faster networks not necessarily better
> Wireless increasingly important
» Packets can have real-time deadlines

User Interfacing

Idea
» Present functionality directly to humans

Modes:

» Visual — screens

» Tactile — keyboards

» Aural — sounds, speech recognition
This aspect of embedded systems shouldn't
be ignored

» Bad interfaces Kkill people

» E.g. anesthesia, radiation therapy

But we will ignore it anyway
> Doesn’t really fit in with rest of course
> We have a Ul course if you’re really interested

Storage

Idea

» Make today’s huge persistent storage devices
available to embedded applications

Sometimes embedded storage is special-
purpose
» Car needs to remember if passenger-side airbag
is enabled or disabled

But often, general-purpose storage
management can be embedded

» iPods, digicam flash cards, etc. use standard
filesystems

Embedded System
Requirements

¢ Two basic flavors
» Functional — What the system does
> We just talked about this

» Non-functional (or para-functional) — Important
properties not directly related to what the system
does

Example Non-Functional

® & 6 6 06 0 o

4

Requirements

Energy-efficient

Real-time

Safety critical

Upgradeable

Cost sensitive

Highly available or fault-tolerant
Secure

These issues cut across system designs
» Important (and difficult) to get them right
> We’'ll be spending a lot of time on these

Crosscutting Issues

¢ Energy efficiency

» Must run for years on a tiny battery (hearing aid,
pacemaker)

»> Unlimited power (ventilation control)

¢ Real-time

» Great harm is done if deadlines are missed (process
control, avionics, weapons)

> Few time constraints (toy)

More Crosscutting Issues

¢ Safety critical
» Device is safety critical (nuclear plant)
» Failure is largely irrelevant (toy, electric toothbrush)

¢ Upgradability
> Impossible to update (spacecraft, pacemaker)
» Easily updated (firmware in a PC network card)

More Crosscutting Issues

¢ Cost sensitivity

> A few % In extra costs will Kkill profitability
(many products)

» Costis largely irrelevant (military applications)

¢ Availability / fault-tolerance

> Must be operating all the time (pacemaker,
spacecraft control)

» Can shutdown at any time (cell phone)

More Crosscutting Issues

¢ Secure

» Security breach extremely bad (smart card,
satellite, missile launch control)

» Security irrelevant (many systems)

¢ Distributed
» Single-node (many systems)
» Fixed topology (car)

» Variable topology (sensor network, bluetooth
network)

Ripped from the Headlines

¢ Since 2008, new vehicles in the US all have
a sensor in each tire

» Communicates with main ECU using wireless

¢ “The pressure sensors contain unique IDs,
so merely eavesdropping enabled the
researchers to identify and track vehicles
remotely. Beyond this, they could alter and
forge the readings to cause warning lights
on the dashboard to turn on, or even crash
the ECU completely.”

¢ http://arstechnica.com/security/news/2010/0
8/cars-hacked-through-wireless-tyre-
sensors.ars

* o

Software Architectures

Important high-level decision when building
an embedded system:

»> What does the “main loop” look like?

How is control flow determined?

» What computations can preempt others, and
when?

How is data flow determined?
Options:

» Cyclic executive
> Event-driven

» Threaded
>
>

Dataflow
Client-server

Cyclic Executive

main() {
init();
while (1) {
a(); Advantages?
b(); Disadvantages?

c();
d();
H

Historically, most embedded systems
are based on cyclic executives

Cyclic Exec. Variations

main() { n::::‘(g) {
Ini(); while (1) {
while (1) { a():
wait_on_clock(); b():
a(); a()-,
b(); c0)-
c(); f
) a();

H

Interrupt Driven

main() {
while (1) { }

}

interrupt_handler() {

}
Or...

main() {
while (1) {
sleep();
}
}

Advantages?
Disadvantages?

Event Driven

main() { .
: interrupt_handler() {
while (1) { _ —
time_critical_stuff();
event te =

enqueue_event
(non_time_critical);

}

get_event();
if (e) {
(e)O);
} else {
sleep_cpu();

1

Advantages?
Disadvantages?

Threaded (using an RTOS)

¢ Threads are usually sleeping on events

¢ Highest priority thread runs except when:
> It’s blocked
> An interrupt is running

> It wakes up and another thread is executing in
the kernel

Advantages?
Disadvantages?

Pipeline-Driven (Dataflow)
Network

Output
Radar
Fiter

Clock

Output_

Client-Server
Network
Output
Radar
Fiter

Clock

Output_

Architecture Summary

¢ All of the architectures have significant
advantages and disadvantages

» Resource usage
» Responsiveness
» Safety

» Fault tolerance
» Maintainability

¢ Once an architecture is chosen, lots of
other design decisions follow

¢ Very important to choose an appropriate
architecture for a new system

¢ Architectures can be combined
> But this is hard to get right

Choosing a CPU

¢ Issues:

» Cost
Size
Pinout
Devices
Performance
Match to system workload
Memory protection
Address space size
Word size
User / kernel support
Floating point

YV VYV VYV VY Y Y Y VY VYV VY

CPU Options

¢ Create custom hardware
» May not need any CPU at all!

¢ 4-bit microcontroller
» Few nibbles of RAM
> No OS
> Software all in assembly
» E.g. COP400, EM73201, W741E260, HD404358
» Dying out?

More CPU Options

¢ 8-bit microcontroller
> A few bytes to a few hundred KB of RAM

> At the small end software is in asm, at the high end
C, C++,Java

» Might run a home-grown OS, might run a commercial
RTOS

> Still dominate both numbers and dollar volume
» Two Kinds:
» Old style
» CISC, designed for hand-written code
» E.g. 68HC11, 6502, Z80, 8051
» These are >20 years old and doing well
» New style
» RISC, desighed as a compiler target
» E.g. AVR, PIC

More CPU Options

¢ 16- and 32-bit microcontrollers

>

YV VYV VY VY VY

Few KB to many MB of RAM
Usually runs an RTOS

May or may not have caches
Wide range of costs

16-bit: 68HC16, H8

32-bit: ARM7, ARM9, ARM11, MIPS, MN10300,
x86, PPC, ColdFire

> Labs in this class will use ColdFire

A\

Is 16-bit dying?

» Has serious disadvantages compared to 32-
bit but few advantages

New ARM “Cortex” processors designed to Kkill
the 8-bit and 16-bit markets

More CPU Options

¢ 32- or 64-bit microprocessor
» Basically a PC in a small package
> Runs Win XP, Linux, or whatever
> Relatively expensive in power and $$

¢ Many specialized processors exist
> E.g. DSP - optimized for signal processing

Choosing a Language

¢ Issues:

> Footprint
> RAM, ROM
Efficiency
Debuggability
Predictability
Portability
Toolchain quality
Libraries
Level of abstraction
Developer availability
» Anyone know Jovial? PL/1? Forth? BCPL?

vV V ¥V VYV VYV VYV V V

Programming Languages

¢ Assembler
> No space overhead
» Good programmers write fast code
» Non-portable
» Very hard to debug

¢ C

> Little space and time overhead
» Somewhat portable
» Good compilers exist

More Languages

¢ C++
» Often used as a “better C”
> Low space and time overhead if used carefully
> Unbelievably complex

¢ Java

More portable

Full Java requires lots of RAM

J2ME popular on cell-phone types of devices

>
>
>
> Bad for real-time!

Choosing an OS

¢ Issues very similar to languages
> Footprint

> RAM, ROM

Efficiency

Debuggability

Predictability

Portability

¢ Other issues
» Process /thread model
» Device support
» Scheduling model
» Price and licensing model

>
>
>
>

Real-Time OS

Low end: Not much more than a threads
library

High end: Stripped-down version of Linux
or WinXP
Many, many RTOSs exist

» They are quite easy to create

Interesting RTOSs:
> QNX

» UClinux

> uC/OS-Il

> VXWorks

¢ o

Summary

Embedded systems are highly diverse

External requirements dictate
» Choice of CPU, language, OS
» Choice of software architecture
» This is worth thinking about very carefully

Very different experience developing
embedded apps relative to desktop apps

Embedded systems are:
> Fun — They make stuff happen in the real world

> Important — Your life depended on hundreds of
them on the way to school today

> Ubiquitous — More processors sold per year than
people on earth

Assignment for Tuesday

¢ Find an embedded device that you can take
apart such as an old

» Cell phone, home router or hub, MP3 player,
printer, ...

¢ Has to be a device you don’t care about!
> If you can’t find one, talk to me

¢ Open the device so you can see the main
circuit board

¢ Identify as many parts as possible — search
for part numbers on the web

¢ Talk about the device in class on Tues
» Also hand in a short writeup — I’ll mail about this

¢ o

Assignment for Thurs

A short quiz about C code is one the course
web page

Print it and write in the answers
Bring it to class next Thurs

